The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] icon(432hit)

201-220hit(432hit)

  • Hybrid-Integrated Symmetric Mach-Zehnder All-Optical Switches and Ultrafast Signal Processing

    Kazuhito TAJIMA  Shigeru NAKAMURA  Akio FURUKAWA  Tatsuya SASAKI  

     
    INVITED PAPER

      Vol:
    E87-C No:7
      Page(s):
    1119-1125

    Symmetric Mach-Zehnder (SMZ) type all-optical swit-ches are discussed. The SMZ type all-optical switches feature the so-called differential phase modulation scheme to achieve a speed unrestricted by efficient, thus usually slow nonlinearities. In these switches, semiconductor optical amplifiers (SOAs) are often used to realize low optical power switching. We discussed SOAs from a view point of all-optical switch applications, rather than amplifier applications. Finally, all-optical signal processing experiments are discussed with the SMZ type all-optical switches. These include ultrafast demultiplexing of 336 Gb/s signal pulses and random operations at 42 Gb/s for all-optical logic operation and wavelength conversion.

  • Power Loss Estimation Analysis Based on Experimental Power Switching Device Data for Three-Phase ARCP Assisted Soft Switching Inverter

    Eiji HIRAKI  Yoshihiko HIROTA  Mutsuo NAKAOKA  Toshikazu HORIUCHI  Yoshitaka SUGAWARA  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E87-B No:5
      Page(s):
    1366-1372

    This paper deals with a simple and practical power loss analysis simulator, which can actually estimate the total power losses of three phase voltage-fed Auxiliary resonant commutation pole snubber assisted soft switching inverter as well as hard-switching inverter. In order to estimate the switching power losses and conduction power losses of switching semiconductor power devices (IGBTs), which are incorporated into the inverters, the proposed practical simulator is making use of feasible switching power loss data tables and conduction power loss data tables, which are accumulated from the measured voltage and current operating waveforms of power semiconductor switching devices. The practical effectiveness of feasible simulation technique and power loss evaluations for power electronic conversion circuits and systems are confirmed by the simulation and experimental results basis under the conditions of soft switching and hard switching sinusoidal PWM schemes.

  • 40-Gbit/s 16-bit Burst Optical Packet Generator Based on Photonic Parallel-to-Serial Conversion

    Hirokazu TAKENOUCHI  Kiyoto TAKAHATA  Tatsushi NAKAHARA  Ryo TAKAHASHI  Hiroyuki SUZUKI  

     
    LETTER-Optoelectronics

      Vol:
    E87-C No:5
      Page(s):
    825-827

    We propose a burst optical packet generator based on a novel photonic parallel-to-serial conversion scheme, and demonstrate 40-Gbit/s 16-bit optical packet generation from 16-ch parallel low-voltage TTL data streams. It consists of electrical 4:1 parallel-to-serial converters that employ InP metal-semiconductor-metal photodetectors, and an optical time-domain multiplexer with electroabsorption modulators. The proposed optical packet generator is suitable for burst optical packet generation and overcomes the electronic bandwidth limitation, which is prerequisite for achieving high-speed photonic packet switched networks. In addition, it can be driven by simple low-cost low-power CMOS logic circuits, and is compact and extensible in terms of the number of input channels due to the effective combination of electrical and optical multiplexing.

  • Microphotonics Devices Based on Silicon Wire Waveguiding System

    Koji YAMADA  Tai TSUCHIZAWA  Toshifumi WATANABE  Jun-ichi TAKAHASHI  Emi TAMECHIKA  Mitsutoshi TAKAHASHI  Shingo UCHIYAMA  Hiroshi FUKUDA  Tetsufumi SHOJI  Sei-ichi ITABASHI  Hirofumi MORITA  

     
    INVITED PAPER

      Vol:
    E87-C No:3
      Page(s):
    351-358

    A silicon (Si) wire waveguiding system fabricated on silicon-on-insulator (SOI) substrates is one of the most promising platforms for highly-integrated, ultra-small optical circuits, or microphotonics devices. The cross-section of the waveguide's core is about 300-nm-square, and the minimum bending radius are a few micrometers. Recently, crucial problems involving propagation losses and in coupling with external circuits have been resolved. Functional devices using silicon wire waveguides are now being tested. In this paper, we describe our recent progress and future prospects on the microphotonics devices based on the silicon-wire waveguiding system.

  • Photonic Crystal with Advanced Micro/Nano-Structures: Quantum Dots and MEMS

    Satoshi IWAMOTO  Yasuhiko ARAKAWA  

     
    INVITED PAPER

      Vol:
    E87-C No:3
      Page(s):
    343-350

    We discuss photonic crystals (PhCs) with advanced micro/nano-structres which are semiconductor quantum dots (QDs) and micro electro-mechanical systems (MEMS) for the purpose of realizing novel classes of PhC devices in future photonic network system. After brief introduction on advantages to implement QDs and MEMS with PhCs, we discuss optical characterization of PhC microcavity containing self-assembled InAs QDs. Modification of emission spectrum of a QD ensemble due to the resonant cavity modes is demonstrated. We also point out the feasibility of low-threshold PhC lasers with QD active media in numerical analysis. A very low threshold current of 10 µA is numerically obtained for lasing action in the multi dimensional distributed feedback mode by using realistic material parameters. Then, the basic concept for MEMS-controlled PhC slab devices is described. We show numerical results that demonstrate some of interesting functions such as the intensity modulation and the tuning of resonant frequency of cavity mode. Finally, a preliminary experiment of MEMS-based switching operation in a PhC line-defect waveguide is demonstrated.

  • Finite-Difference Time-Domain Simulation of Two-Dimensional Photonic Crystal Surface-Emitting Laser Having a Square-Lattice Slab Structure

    Mitsuru YOKOYAMA  Susumu NODA  

     
    PAPER

      Vol:
    E87-C No:3
      Page(s):
    386-392

    By means of the three-dimensional (3D) finite-difference time domain (FDTD) method, we have investigated in detail the optical properties of a two-dimensional photonic crystal (PC) surface-emitting laser having a square-lattice structure. The 3D-FDTD calculation is carried out for the finite size PC slab structure. The device is based on band-edge resonance, and plural band edges are present at the corresponding band edge point. For these band edges, we calculate the mode profile in the PC slab, far field pattern (FFP) and polarization mode of the surface-emitted component, and photon lifetime. FFPs are shown to be influenced by the finiteness of the structure. Quality (Q) factor, which is a dimensionless quantity representing photon lifetime, is introduced. The out-plane radiation loss in the direction normal to the PC plane greatly influences the total Q factor of resonant mode and is closely related with the band structure. As a result, Q factors clearly differ among these band edges. These results suggest that these band edges include resonant modes that are easy to lase and resonant modes that are difficult to lase.

  • High Index-Contrast 2D Photonic Band-Edge Laser

    Soon-Hong KWON  Yong-Hee LEE  

     
    INVITED PAPER

      Vol:
    E87-C No:3
      Page(s):
    308-315

    Free-standing 2D slab photonic band-edge lasers based on square lattice and triangular lattice are realized by optical pumping at room-temperature. Both in-plane-emission and surface-emission photonic band-edge lasers are observed and compared. Analyses on optical loss mechanisms for finite-size photonic band-edge lasers are also discussed.

  • Effects of Various Rare Earth Sesquioxide Additives on Grain Growth in Millimeter-Wave Sintered Silicon Nitride Ceramics

    Masayuki HIROTA  Maria-Cecilia VALECILLOS  Manuel E. BRITO  Kiyoshi HIRAO  Motohiro TORIYAMA  

     
    PAPER-Millimeter-Wave Heating

      Vol:
    E86-C No:12
      Page(s):
    2462-2468

    Using various rare earth sesquioxides as additives, silicon nitride (Si3N4) samples were sintered at 1700 for 4 h by millimeter-wave heating performed in an applicator fed by a 28 GHz Gyrotron source under a nitrogen pressure of 0.1 MPa. A comparative study of densification, grain growth behavior and mechanical properties of silicon nitride fabricated by millimeter-wave and conventional sintering was carried out. Bulk densities were measured by Archimedes' technique. Except for the Eu2O3 containing sample, all samples were densified to relative densities of above 97.0%. Microstructure of the specimens was analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). To investigate quantitatively the effect of millimeter-wave heating on grain growth, image analysis was carried out for grains in the specimens. Fracture toughness was determined by the indentation-fracture method (IF method) in accordance with Japan Industrial Standards (JIS). Fully dense millimeter-wave sintered silicon nitride presenting a bimodal microstructure exhibited higher values of fracture toughness than materials processed by conventional heating techniques. Results indicate that millimeter-wave sintering is more effective in enhancing the grain growth and in producing the bimodal microstructure than conventional heating. It was also confirmed that localized runaway in temperature, depending upon the sintering additives, can occur under millimeter-wave heating.

  • Equivalent Circuit Model of InAlAs/InGaAs/InP Heterostructure Metal-Semiconductor-Metal Photodetectors

    Koichi IIYAMA  Junya ASHIDA  Akira TAKEMOTO  Saburo TAKAMIYA  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E86-C No:11
      Page(s):
    2278-2282

    One-dimentional equivalent circuit model of a heterostructure InAlAs/InGaAs/InP metal-semiconductor-metal photodetector is discussed. In this photodetector, InGaAs is used as an optical absorption layer and the InAlAs is used for Schottky barrier enhanement. The measured S11 parameter deviates from equi-resistance lines on the Smith chart, indicating the equivalent circuit is different from the conventional equivalent circuit using a series resistance, a depletion region capacitance and a depletion region resistance. The difference is due to band discontinuity at the heterojunctions, and we propose a equivalent circuit taking account of the band discontinuity. The band discontinuity is expressed by parallel combination of a resistance and a capacitance. The measured S11 parameter can be fitted well with the calculated S11 parameter from the proposed equivalent circuit, and we can successfully extract the device parameters from the fitted curve.

  • Characterization of 10 µm Thick Porous Silicon Dioxide Obtained by Complex Oxidation Process for RF Application

    Jeong-Yong PARK  Jong-Hyun LEE  

     
    LETTER-Semiconductor Materials and Devices

      Vol:
    E86-C No:11
      Page(s):
    2336-2340

    This paper proposes a 10 µm thick oxide layer structure, which can be used as a substrate for RF circuits. The structure has been fabricated by anodic reaction and complex oxidation, which is a combined process of low temperature thermal oxidation (500, for 1 hr at H2O/O2) and a rapid thermal oxidation (RTO) process (1050, for 1 min). The electrical characteristics of oxidized porous silicon layer (OPSL) were almost the same as those of standard thermal silicon dioxide. The leakage current through the OPSL of 10 µm was about 100-500 pA in the range of 0 V to 50 V. The average value of breakdown field was about 3.9 MV/cm. From the X-ray photo-electron spectroscopy (XPS) analysis, surface and internal oxide films of OPSL, prepared by complex process, were confirmed to be completely oxidized. Also the role of RTO was important for the densification of the porous silicon layer (PSL), oxidized at a lower temperature. For the RF test of Si substrate, with thick silicon dioxide layer, we have fabricated high performance passive devices such as coplanar waveguide (CPW) on OPSL substrate. The insertion loss of CPW on OPSL prepared by complex oxidation process was -0.39 dB at 4 GHz and similar to that of CPW on OPSL prepared at a temperature of 1050 (1 hr at H2O/O2). Also the return loss of CPW on OPSL prepared by complex oxidation process was -23 dB at 10 GHz which is similar to that of CPW on OPSL prepared by high temperature oxidation.

  • Hetero-Interface Properties of SiO2/4H-SiC on Various Crystal Orientations

    Hiroyuki MATSUNAMI  Tsunenobu KIMOTO  Hiroshi YANO  

     
    INVITED PAPER

      Vol:
    E86-C No:10
      Page(s):
    1943-1948

    Hetero-interface properties of SiO2/4H-SiC on (0001), (11-20), and (03-38) crystal orientations are presented. Epitaxial growth on new crystal orientations, (11-20) and (03-38), is described by comparing with the growth on (0001). Using thermal oxidation with wet oxygen, metal-oxide-SiC (MOS) structure was fabricated. From high-frequency capacitance-voltage characteristics measured at 300 K and 100 K, the interface properties were characterized semi-quantitatively. The interface state density was precisely determined using the conductance method for the MOS structure at 300 K. The new crystal orientations have the lower interface state density near the conduction band edge than (0001). From the characteristics of inversion-type planar MOSFETs, higher channel mobilities were obtained on (03-38) and (11-20) than on (0001). The cause of the difference in the channel mobility is speculated by the difference bond configuration of the three crystal orientations.

  • Novel High-Throughput Plasma Enhanced Growth of SiGe in a 200 mm/300 mm Single Wafer Cluster Tool

    Juergen RAMM  Hans von KANEL  

     
    INVITED PAPER

      Vol:
    E86-C No:10
      Page(s):
    1935-1942

    A low energy plasma based on an electron discharge was investigated for the pre-epi clean of silicon wafers and for plasma enhanced homo and hetero epitaxial growth of Si and SiGe layers. VS were produced in a short, completely dry process sequence consisting of LEPC and LEPECVD only. The wafer/epilayer interface obtained in this process sequence was suitable to grow high quality VS with low surface roughness and dislocation densities. Based on this process and its implementation in a 200/300 mm single wafer cluster tool, a high volume and economical production of VS seems possible.

  • Back-Irradiation Type Photo-Detector Arrays Using Field Emitter Device

    Takashi ONO  Kazuaki SAWADA  Young Chul JUNG  Yoshitaka MORIYASU  Hidekuni TAKAO  Makoto ISHIDA  

     
    PAPER

      Vol:
    E86-C No:9
      Page(s):
    1805-1809

    A new type of photodetector called "photosensitive floating field emitter, (PFFE)" has been proposed. The PFFE device combines an n-type cone-shaped triode field emitter with a-Si p-i-n photodiode film. However, a PFFE cannot detect two-dimensional distributions of light intensity. In this paper, we propose a novel structure to overcome the above this problem of the PFFE. The device was fabricated on a silicon-on-sapphire substrate to permit irradiation from the backside. p-n photodiodes were constructed within a field emitters, the n+ region being separated by p+ regions to permit detection of two- dimensional light distributions. The emission current of the PFFE/SOS was found to be proportional to the illumination intensity, but the quantum efficiency was only about 2%. This quantum efficiency is lower than that expected. Under irradiation, the emission current increased, but the gate-leakage current increased. This gate-leakage current was several orders of magnitude larger than the emission current. Almost photo-generated electrons lost in the gate electrode.

  • A Novel Technique for Optical Generation of Millimeter-Wave Signals Using Multiple Phase-Locked Lasers

    Masaharu HYODO  Masayoshi WATANABE  

     
    PAPER-Signal Generation and Processing Based on MWP Techniques

      Vol:
    E86-C No:7
      Page(s):
    1236-1244

    A new technique for optical generation of high-purity millimeter-wave (mm-wave) signals--namely, by synthesizing the outputs from cascadingly phase-locked multiple semiconductor lasers--was developed. Firstly, a high-spectral-purity mm-wave signal was optically generated by heterodyning the outputs from two phase-locked external-cavity semiconductor lasers. The beat signal was detected by a p-i-n photodiode whose output was directly coupled to a coax-waveguide converter followed by a W-band harmonic mixer. By constructing an optical phase-locked loop (OPLL), a high-spectral-purity mm-wave signal with an electrical power of 2.3 µW was successfully generated at 110 GHz with an rms phase fluctuation of 57 mrad. Secondly, the frequency of the mm-wave signal was extended by use of three cascadingly phase-locked semiconductor lasers. This technique uses a semiconductor optical amplifier (SOA) to generate four-wave-mixing (FWM) signals as well as to amplify the input signals. When the three lasers were appropriately tuned, two pairs of FWM signals were nearly degenerated. By phase-locking the offset frequency in one of the nearly degenerated pairs, the frequency separations among the three lasers were kept at a ratio of 1:2. Thus, we successfully generated high-purity millimeter-wave optical-beat signals at frequencies at 330.566 GHz with an rms phase fluctuation of 0.38 rad. A detailed analysis of the phase fluctuations was carried out on the basis of measured power spectral densities. The possibility of extending the mm-wave frequency up to 1 THz by using four cascadingly phase-locked lasers was also discussed.

  • Photoconductive Generation and Detection of Guided-Wave and Free-Space Terahertz Waveforms

    Abdulhakem Y. ELEZZABI  Jonathan F. HOLZMAN  

     
    INVITED PAPER-Signal Generation and Processing Based on MWP Techniques

      Vol:
    E86-C No:7
      Page(s):
    1218-1225

    We report on several photoconductive (PC) geometries for the generation of both guided-wave and free-space terahertz (THz) waveforms. It is found that guided-wave THz electrical waveforms can be produced through both PC self-switching and frozen wave generation--eliminating the need for an ultrashort carrier lifetime in the semiconductor substrate. The concept of PC switching is also applied to the generation of free-space THz waveforms, and various ZnSe detectors are investigated as potential electro-optic THz sensors.

  • Gain Improvement of a 2.4-GHz/5-GHz CMOS Low Noise Amplifier by Using High-Resistivity Silicon-on-Insulator Wafers

    Junichi KODATE  Mamoru UGAJIN  Tsuneo TSUKAHARA  Takakuni DOUSEKI  Nobuhiko SATO  Takehito OKABE  Kazuaki OHMI  Takao YONEHARA  

     
    PAPER

      Vol:
    E86-C No:6
      Page(s):
    1041-1049

    The performance of radio frequency integrated circuits (RFICs) in silicon-on-insulator (SOI) technology can be improved by using a high-resistivity SOI substrate. We investigated the correlation between substrate resistivity and the performance of a low noise amplifier (LNA) on ELTRAN(R) SOI-Epi wafersTM, whose resistivity can be controlled precisely. The use of high-resistivity ELTRAN wafers improves the Q-factor of spiral inductors, and thereby increases the gain and narrows the bandwidth of the LNA. Using the high-resistivity ELTRAN wafers, we have successfully fabricated a 2.4-GHz and 5-GHz CMOS LNA in 0.35-µm SOI CMOS technology, whose process cost is lower than the latest CMOS technologies.

  • Influence of Silicone Vapor on Micro-Motor Reliability

    Terutaka TAMAI  Kiyoshi OGAWA  

     
    PAPER-Contact Phenomena

      Vol:
    E86-C No:6
      Page(s):
    885-890

    The effect of the silicone vapor on the reliability of the micro-motor was examined. Adsorbed silicone was decomposed to SiO2 by heating due to the discharge between brush and commutator surface. It was found that the operation time until the failure was extremely shortened by the formation of SiO2. The existence of the maximum operation time until the failure was found as depending on the number of revolution. For the higher revolution, many amounts of SiO2 accumulated by the decomposition of the silicone shorten the operation time. For lower revolution, as the torque of the motor reduces, the operation time also shortens. Therefore, the maximum operation time exists for optimum revolution.

  • 80 Gbit/s Conventional and Carrier-Suppressed RZ Signals Transmission over 200 km Standard Fiber by Using Mid-Span Optical Phase Conjugation

    Jun INOUE  Wataru CHUJO  Hideyuki SOTOBAYASHI  Hitoshi KAWAGUCHI  

     
    INVITED PAPER-OECC Awarded Paper

      Vol:
    E86-B No:5
      Page(s):
    1555-1561

    An 80 Gbit/s conventional and carrier-suppressed return-to-zero optical time-division multiplexing signal transmission over a 208 km standard single-mode fiber was experimentally demonstrated. This was achieved by using mid-span optical phase conjugation based on four-wave mixing in semiconductor optical amplifiers. In addition, it was confirmed that the transmitted carrier-suppressed return-to-zero optical signal's carrier phase-relation was held.

  • Analysis of XGM-Based Wavelength-Conversion Using ASE in SOAs

    Kenichiro TSUJI  Naoyuki MATSUSHITA  Noriaki ONODERA  Masatoshi SARUWATARI  

     
    PAPER

      Vol:
    E86-C No:5
      Page(s):
    741-748

    Wavelength conversion using the cross-gain modulation (XGM) of amplified spontaneous emission (ASE) in a traveling-wave type semiconductor optical amplifier (TW-SOA) is theoretically studied. Taking into account the spatial and temporal variations of carrier density along the SOA length, output signal and converted ASE waveforms are analyzed. We also reveal the dependency of the signal and converted ASE waveforms on input signal power and repetition frequency, and confirm that numerical analyses well agree with the experimental results. Finally we qualitatively clarify the way to improve frequency response by simulating eye-diagrams for long SOAs and assist light pumping for the first time.

  • Novel Methods of Estimating Polarization Dependence in Semiconductor Optical Amplifiers Integrated with Spot-Size Convertors

    Toshio ITO  Katsuaki MAGARI  Yasuo SHIBATA  Yoshihiro KAWAGUCHI  Yasuhiro KONDO  Yuichi TOHMORI  Yasuhiro SUZUKI  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E86-C No:5
      Page(s):
    831-837

    We propose a novel method of precisely measuring the polarization dependence of single pass gain (PDG) in a semiconductor optical amplifier integrated with spot-size convertors (SS-SOA). By averaging the signal gain of a SS-SOA over a wide wavelength range using the amplified spontaneous emission (ASE) of an erbium doped fiber (EDF), the PDG can be accurately estimated. This is because the influence of gain ripples on the measurement results are drastically reduced. We successfully evaluated the PDG of an angled-facet SS-SOA, even before the process of anti-reflection coating, within a small error of 0.5dB. The EDF-ASE technique is useful in sampling tests and selecting angled-facet SS-SOA chips from wafers. The polarization dependence of the coupling efficiency (PDCE) between a SS-SOA and optical fiber is also evaluated by measuring the photo-current of the active layer for TE and TM input signals. It is possible, therefore, to specify the polarization characteristics of the active region and spot-size converter region, which are indispensable parameters for the design of the SS-SOA.

201-220hit(432hit)