The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] icon(432hit)

161-180hit(432hit)

  • Design and Fabrication of 40 Gbps-NRZ SOA-MZI All-Optical Wavelength Converters with Submicron-Width Bulk InGaAsP Active Waveguides

    Yasunori MIYAZAKI  Kazuhisa TAKAGI  Keisuke MATSUMOTO  Toshiharu MIYAHARA  Tatsuo HATTA  Satoshi NISHIKAWA  Toshitaka AOYAGI  Kuniaki MOTOSHIMA  

     
    PAPER-Semiconductor Devices

      Vol:
    E90-C No:5
      Page(s):
    1118-1123

    The design aspects of the bulk InGaAsP semiconductor optical amplifier integrated Mach-Zehnder interferometer (SOA-MZI) optimized for 40 Gbps-NRZ all optical wavelength conversion are described. The dimensions of the SOA active waveguide have been optimized for fast gain recovery by maximizing the gain and adjusting the wavelength-converted NRZ waveforms. Submicron-width buried heterostructure (BH) SOA waveguides were fabricated successfully and showed little leakage current. The experimental wavelength-converted optical waveform agreed well to the numerical simulations, and mask-compliant 40 G-NRZ wavelength-converted waveform was obtained by the optimized SOA-MZI. 40 G-NRZ full C-band operation and polarization-insensitive operation of SOA-MZI were also achieved.

  • Ridge Semiconductor Laser with Laterally Undercut Etched Current Confinement Structure

    Nong CHEN  Jesse DARJA  Shinichi NARATA  Kenji IKEDA  Kazuhiro NISHIDE  Yoshiaki NAKANO  

     
    PAPER-Semiconductor Devices

      Vol:
    E90-C No:5
      Page(s):
    1105-1110

    In this paper we modeled and analyzed the ridge type InGaAlAs/InP semiconductor laser with lateral current confinement structure, and optimized the design for the ridge wave guide with the current confinement. We proposed and fabricated the ridge type InGaAlAs/InP laser with a cost effective selective undercut etching method and demonstrated the improvement of the ridge laser performance. This paper provides a solution to solve the cost/yield issue for conventional BH (buried hetero-structure) type laser and performance issue for conventional ridge type laser.

  • Physical Origin of Stress-Induced Leakage Currents in Ultra-Thin Silicon Dioxide Films

    Tetsuo ENDOH  Kazuyuki HIROSE  Kenji SHIRAISHI  

     
    PAPER-Ultra-Thin Gate Insulators

      Vol:
    E90-C No:5
      Page(s):
    955-961

    The physical origin of stress-induced leakage currents (SILC) in ultra-thin SiO2 films is described. Assuming a two-step trap-assisted tunneling process accompanied with an energy relaxation process of trapped electrons, conditions of trap sites which are origin of SICL are quantitatively found. It is proposed that the trap site location and the trap state energy can be explained by a mean-free-path of hole in SiO2 films and an atomic structure of the trap site by the O vacancy model.

  • Fabrication of a Monolithically Integrated WDM Channel Selector Using Single Step Selective Area MOVPE and Its Characterization

    Abdullah AL AMIN  Kenji SAKURAI  Tomonari SHIODA  Masakazu SUGIYAMA  Yoshiaki NAKANO  

     
    PAPER-Semiconductor Devices

      Vol:
    E90-C No:5
      Page(s):
    1124-1128

    An 8ch, 400 GHz monolithically integrated WDM channel selector featuring an array of quantum well semiconductor optical amplifiers (SOA) and arrayed waveguidegrating demultiplexer is presented. Reduction of fabrication complexity was achieved by using a single step selective area MOVPE to realize the different bandgap profiles for the SOA array and passive region. The selective growth mask dimensions were optimized by simulation. Dry-etching with short bending radii of 200 µm resulted in compact device size of 7 mm2.5 mm. Static channel selection with high ON-OFF ratio of >40 dB was achieved.

  • Novel Functionality and Material for Si-Photonics: Two-Photon Absorption Switching and Antimonide Hetero-Genius Epitaxy

    Tak-Keung LIANG  Kouichi AKAHANE  Naokatsu YAMAMOTO  Luis Romeu NUNES  Tetsuya KAWANISHI  Masahiro TSUCHIYA  

     
    INVITED PAPER

      Vol:
    E90-C No:2
      Page(s):
    409-414

    Novel functionality and material were developed for Si-photonics in this study. Ultra-fast silicon all optical switches using two-photon absorption (TPA) were developed in silicon nanowire optical waveguide on silicon-on-insulator substrate. This waveguide can produce high optical intensities that yield optical nonlinearity such as TPA even at input optical powers typically used in fiber optic communication systems. In addition, we fabricated a GaSb based quantum well (QW) on a Si substrate. The emission wavelength of QW was 1.55 µm at room temperature, so that the new function can be developed on Si-photonics using this QW.

  • Switching-Wavelength Pulsed Source and Its Applications in Parallel Processing of High-Speed Signals

    Chester SHU  Ka-Lun LEE  Mable P. FOK  

     
    INVITED PAPER

      Vol:
    E90-C No:2
      Page(s):
    397-404

    We report the generation of time- and wavelength-interleaved optical pulses using the principle of sub-harmonic pulse gating in a dispersion-managed fiber cavity. The pulsed source has been applied to the processing of electrical and optical signals including analog-to-digital conversion, wavelength multicast, and serial-to-parallel optical data conversion.

  • Distortion Reduction Filters for Radio-on-Fiber System

    Shingo TANAKA  Noritaka TAGUCHI  Tsuneto KIMURA  Yasunori ATSUMI  

     
    PAPER

      Vol:
    E90-C No:2
      Page(s):
    365-372

    Three distortion reduction filters for radio-on-fiber systems are proposed and evaluated from the standpoint of improvements in in-band third order intermodulation (IM3) components (spurious components), insertion loss, temperature stability and so on. The basic filter configuration includes optical comb filter, RF (radiowave frequency) comb filter, and RF dual band rejection filter (DBRF). Experiments are conducted at 2 GHz band for frequency separation Δf=5 MHz and 100 MHz in the temperature range of -10 to +50. These filters can reduce IM3 components even in the saturation region, unlike conventional linearizers. An optical comb filter can reduce IM3 components more than 20 dB and noise level around 10 dB if its polarization controller is properly adjusted, but its insertion loss is large and stability against vibration is very poor. The proposed RF comb filter and RF-DBRF can reduce IM3 components by more than 20 dB and noise level by more than 3 dB. Their stability against vibration and temperature change is good, and insertion losses are 1-2 dB for Δf=100 MHz.

  • Low-Temperature Au-to-Au Bonding for LiNbO3/Si Structure Achieved in Ambient Air

    Ryo TAKIGAWA  Eiji HIGURASHI  Tadatomo SUGA  Satoshi SHINADA  Tetsuya KAWANISHI  

     
    LETTER-Micro/Nano Fabrication

      Vol:
    E90-C No:1
      Page(s):
    145-146

    A lithium niobate (LiNbO3)/silicon (Si) hybrid structure has been developed by the surface-activated bonding of LiNbO3 chips with gold (Au) thin film to Si substrates with patterned Au film. After organic contaminants on the Au surfaces were removed using argon radio-frequency plasma, Au-to-Au bonding was carried out in ambient air. Strong bonding at significantly low temperatures below 100 without generating cracks has been demonstrated.

  • Optical Nonlinearity in CdSSe Microcrystallites Embedded in Glasses

    Hiroyuki SHINOJIMA  

     
    PAPER-Advanced Nano Technologies

      Vol:
    E90-C No:1
      Page(s):
    127-134

    We investigate the enhancement of the optical nonlinearity and the limit of the improvement of the response speed in CdSxSe1-x microcrystallites by measuring the effective optical nonlinear cross section (σeff), the energy decay time (T1) and the dephasing time in two kinds of semiconductor microcrystallites of CdS0.12Se0.8 microcrystallites embedded in alkaline multi-component glasses (CdSSeMs) and CdSe microcrystallites embedded in SiO2 thin film (CdSeMs). As the average radius of CdSSeMs decreases from 10 to 1 nm, the values of σeff and T1 gradually change from 2.610-16 to 1.110-16 cm2 and from dozens picoseconds to 4 psec, respectively. The size dependence of CdSSEMs shows that the energy level structure in the microcrystallite with a radius of less than a few nanometers is a two-level system, in which σeff is proportional to T2. The carrier recombination time (τ) of CdSSeMs with the average radius of 1 nm is estimated to 2 psec. As the average radius of a CdS0.12Se0.8 microcrystallite decreases from 9 to 3 nm, the values of T2 gradually change from 640 to 230 fsec at 18 K, respectively. The size and temperature dependences of T2 for the CdSSeMs show that there is the discrepancy between the theory and the measured T2. The discrepancy showes the presence of the acoustic-phonon-assisted relaxation processes other than the pure-dephasing processes. It is indicated that T2 becomes long by reducing the excessive acoustic-phonon-assisted relaxation processes, and that the longer T2 might enhance σeff. We investigate the enhancement of σeff in CdSeMs by making T2 longer. The τ, σeff, and T2 of CdSeM an average radius of 3 nm are 40 psec, 4.510-15 cm2, and 150 fsec at room temperature. The σeff is ten times as large as that of CdSSeM sample at the same average radius and the enhancement of σeff can be considered to be caused by the longer T2.

  • Automatic Affect Recognition Using Natural Language Processing Techniques and Manually Built Affect Lexicon

    Young Hwan CHO  Kong Joo LEE  

     
    PAPER-Natural Language Processing

      Vol:
    E89-D No:12
      Page(s):
    2964-2971

    In this paper, we present preliminary work on recognizing affect from a Korean textual document by using a manually built affect lexicon and adopting natural language processing tools. A manually built affect lexicon is constructed in order to be able to detect various emotional expressions, and its entries consist of emotion vectors. The natural language processing tools analyze an input document to enhance the accuracy of our affect recognizer. The performance of our affect recognizer is evaluated through automatic classification of song lyrics according to moods.

  • Fabrication and Device Simulation of Single Nano-Scale Organic Static Induction Transistors

    Noboru OHASHI  Masakazu NAKAMURA  Norio MURAISHI  Masatoshi SAKAI  Kazuhiro KUDO  

     
    PAPER-Organic Molecular Devices

      Vol:
    E89-C No:12
      Page(s):
    1765-1770

    A well-defined test structure of organic static-induction transistor (SIT) having regularly sized nano-apertures in the gate electrode has been fabricated by colloidal lithography using 130-nm-diameter polystyrene spheres as shadow masks during vacuum deposition. Transistor characteristics of individual nano-apertures, namely 'nano-SIT,' have been measured using a conductive atomic-force-microscope (AFM) probe as a movable source electrode. Position of the source electrode is found to be more important to increase current on/off ratio than the distance between source and gate electrodes. Experimentally obtained maximum on/off ratio was 710 (at VDS = -4 V, VGS = 0 and 2 V) when a source electrode was fixed at the edge of gate aperture. The characteristics have been then analyzed using semiconductor device simulation by employing a strongly non-linear carrier mobility model in the CuPc layer. From device simulation, source current is found to be modulated not only by a saddle point potential in the gate aperture area but also by a pinch-off effect near the source electrode. According to the obtained results, a modified structure of organic SIT and an adequate acceptor concentration is proposed. On/off ratio of the modified organic SIT is expected to be 100 times larger than that of a conventional one.

  • Interference Resolving Technique for MB-OFDM Systems with UWB Channels

    Seung Young PARK  Yeonwoo LEE  Gadi SHOR  Yong Suk KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:8
      Page(s):
    2237-2240

    In this letter, we propose a symbol repetition technique combined with parallel channel encoding for multiband orthogonal frequency division multiplexing systems with ultra wideband channels. It can resolve timing asynchronous cochannel interference from another simultaneously operating piconet. Our simulation results demonstrate that the proposed scheme can effectively reduce the effect of the interference.

  • Future of Heterostructure Microelectronics and Roles of Materials Research for Its Progress

    Hideki HASEGAWA  Seiya KASAI  Taketomo SATO  Tamotsu HASHIZUME  

     
    INVITED PAPER

      Vol:
    E89-C No:7
      Page(s):
    874-882

    With advent of the ubiquitous network era and due to recent progress of III-V nanotechnology, the present III-V heterostructure microelectronics will turn into what one might call III-V heterostructure nanoelectronics, and may open up a new future in much wider application areas than today, combining information technology, nanotechnology and biotechnology. Instead of the traditional top-down approach, new III-V heterostructure nanoelectronics will be formed on nanostructure networks formed by combination of top-down and bottom-up approaches. In addition to communication devices, emerging devices include high speed digital LSIs, various sensors, various smart-chips, quantum LSIs and quantum computation devices covering varieties of application areas. Ultra-low power quantum LSIs may become brains of smart chips and other nano-space systems. Achievements of new functions and higher performances and their on chip integration are key issues. Key processing issue remains to be understanding and control of nanostructure surfaces and interfaces in atomic scale.

  • Monolithically Integrated Mach-Zehnder Interferometer All-Optical Switches by Selective Area MOVPE

    Xueliang SONG  Naoki FUTAKUCHI  Daisuke MIYASHITA  Foo Cheong YIT  Yoshiaki NAKANO  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E89-C No:7
      Page(s):
    1068-1079

    We achieved first dynamic all-optical signal processing with a bandgap-engineered MZI SOA all-optical switch. The wide-gap Selective Area Growth (SAG) technique was used to provide multi-bandgap materials with a single step epitaxy. The maximum photoluminescence (PL) peak shift obtained between the active region and the passive region was 192 nm. The static current switching with the fabricated switch indicated a large carrier induced refractive index change; up to 14 π phase shift was obtained with 60 mA injection in the SOA. The carrier recovery time of the SOA for obtaining a phase shift of π was estimated to be 250-300 ps. A clear eye pattern was obtained in 2.5 Gbps all-optical wavelength conversion. This is the first all-optical wavelength conversion demonstration with a bandgap-engineered PIC with either selective area growth or quantum-well intermixing techniques.

  • Construction of Thai Lexicon from Existing Dictionaries and Texts on the Web

    Thatsanee CHAROENPORN  Canasai KRUENGKRAI  Thanaruk THEERAMUNKONG  Virach SORNLERTLAMVANICH  

     
    PAPER-Natural Language Processing

      Vol:
    E89-D No:7
      Page(s):
    2286-2293

    A lexicon is an important linguistic resource needed for both shallow and deep language processing. Currently, there are few machine-readable Thai dictionaries available, and most of them do not satisfy the computational requirements. This paper presents the design of a Thai lexicon named the TCL's Computational Lexicon (TCLLEX) and proposes a method to construct a large-scale Thai lexicon by re-using two existing dictionaries and a large number of texts on the Internet. In addition to morphological, syntactic, semantic case role and logical information in the existing dictionaries, a sort of semantic constraint called selectional preference is automatically acquired by analyzing Thai texts on the web and then added into the lexicon. In the acquisition process of the selectional preferences, the so-called Bayesian Information Criterion (BIC) is applied as the measure in a tree cut model. The experiments are done to verify the feasibility and effectiveness of obtained selection preferences.

  • Reduction of the Intensity Noise by Electric Positive and Negative Feedback in Blue-Violet InGaN Semiconductor Lasers

    Minoru YAMADA  Kazushi SAEKI  Eiji TERAOKA  Yuji KUWAMURA  

     
    LETTER-Lasers, Quantum Electronics

      Vol:
    E89-C No:6
      Page(s):
    858-860

    Reduction of the intensity noise in semiconductor lasers is important subject to extend application range of the device. Blue-violet InGaN laser reveals high quantum noise when the laser is operated with low output power. The authors proposed a new scheme of noise reduction both for the optical feedback noise and the quantum noise by applying electric feedback which is positive type at a high frequency and negative type for lower frequency range. Noise reduction effect down to a level lower than the quantum noise was experimentally confirmed even under the optical feedback.

  • EM Radiated Field by a Branched and Tortuous CG Discharge, Even Considering a Direct Stroke on an Aircraft

    Edoardo ALFASSIO GRIMALDI  Morris BRENNA  Fulvio MARTINELLI  Riccardo Enrico ZICH  

     
    PAPER-Others

      Vol:
    E88-B No:8
      Page(s):
    3300-3306

    This paper studies the electromagnetic field radiated by a return stroke, considering even the case of a direct lightning on an aircraft, in the Fraunhofer region. The work here presented is an analysis of a complete discharge case, considering the electric field due to some charged clouds, the presence of a conductive airplane immersed in this external electric field, the channels related to the lightning paths, and the interactions of the field due to the lightning return stroke with a far field located victim system. It could be divided in several steps. Firstly, the cloud-generated electric field has been calculated, and a particular model of the clouds has been introduced. For what concerns the geometrical considerations, a Koch's snowflake shaped cloud has been chosen, in order to achieve a complex geometrical model. To better fit this model with the reality a non-symmetric cloud has been created. Then, a simple aircraft model, according to those reported in literature, has been introduced. The conductive structure of the aircraft interacts with the atmospheric electric field and modifies its distribution. Furthermore, applying a boundary panel method, frequently used in subsonic incompressible aerodynamics, Laplace's equation for the electrostatic potential in the considered domain has been computed, taking into account the presence of the metallic structure. Finally, the inception points on the outer surface of the aircraft are calculated and highlighted. Beginning from those points, in which the probability of discharge is higher, a suitable lightning channel has been created, and the shape of the jagged field signal has been correlated to the tortuous path discharge, even considering the presence of branches. The total electric field given by the first discharge from the cloud to the airplane, by the second discharge from the aircraft to the ground and by the current flowing along the fuselage has been computed and calculated in a far field located observation point.

  • Electrically Small Antennas with Miniaturized Impedance Matching Circuits for Semiconductor Amplifiers

    Keiji YOSHIDA  Yukako TSUTSUMI  Haruichi KANAYA  

     
    PAPER-Active Circuits & Antenna

      Vol:
    E88-C No:7
      Page(s):
    1368-1374

    In order to reduce the size of a wireless system, we propose a design theory for the broadband impedance matching circuit which connects an electrically small antenna (ESA) to a semiconductor amplifier. We confirmed its validity for the case of connection between a small slot loop antenna with a small radiation resistance of Ra =0.776 Ω and a semiconductor amplifier with high input impedance of ZL =321-j871 Ω with the aid of the simulations by the electrical circuits using transmission lines as well as the electromagnetic field (EM field) simulator. We also made experiments on this antenna with matching circuits using high temperature superconductor YBCO thin films on MgO substrates.

  • A Cascade Open-Short-Thru (COST) De-Embedding Method for Microwave On-Wafer Characterization and Automatic Measurement

    Ming-Hsiang CHO  Guo-Wei HUANG  Chia-Sung CHIU  Kun-Ming CHEN  An-Sam PENG  Yu-Min TENG  

     
    PAPER

      Vol:
    E88-C No:5
      Page(s):
    845-850

    In this study, a cascade open-short-thru (COST) de-embedding procedure is proposed for the first time for on-wafer device characterization in the RF/microwave frequency regime. This technique utilizes the "open" and "short" dummy structures to de-embed the probe-pad parasitics of a device-under-test (DUT). Furthermore, to accurately estimate the input/output interconnect parasitics, including the resistive, inductive, capacitive, and conductive components, the "thru" dummy device has been characterized after probe-pad de-embedding. With the combination of transmission-line theory and cascade-configuration concept, this method can efficiently generate the scalable and repeatable interconnect parameters to completely eliminate the redundant parasitics of the active/passive DUTs of various device sizes and interconnect dimensions. Consequently, this method is very suitable for the on-wafer automatic measurement.

  • Theoretical Study of Assist Light Effect on XGM and XPM-Based Wavelength-Conversion Using SOAs

    Kenichiro TSUJI  Takuya WATANABE  Noriaki ONODERA  Masatoshi SARUWATARI  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E88-C No:5
      Page(s):
    973-980

    For wavelength conversion based on cross-gain modulation (XGM) and cross-phase modulation (XPM) in semiconductor optical amplifiers (SOAs), a CW assist light is quite effective for acceleration of carrier recovery and reduction of pattern effects. We theoretically study assist light conditions both for XGM- and XPM-based wavelength conversion by numerically simulating eye-diagrams. Taking into account the spatial and temporal variations of carrier density along the SOA length, we successfully clarify the dependences of wavelength, power, and propagation direction of the assist light, and reveal the principal difference of response characteristics between XGM and XPM depending on carrier modulation.

161-180hit(432hit)