The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] sign(2667hit)

581-600hit(2667hit)

  • Music Signal Separation Based on Supervised Nonnegative Matrix Factorization with Orthogonality and Maximum-Divergence Penalties

    Daichi KITAMURA  Hiroshi SARUWATARI  Kosuke YAGI  Kiyohiro SHIKANO  Yu TAKAHASHI  Kazunobu KONDO  

     
    LETTER-Engineering Acoustics

      Vol:
    E97-A No:5
      Page(s):
    1113-1118

    In this letter, we address monaural source separation based on supervised nonnegative matrix factorization (SNMF) and propose a new penalized SNMF. Conventional SNMF often degrades the separation performance owing to the basis-sharing problem. Our penalized SNMF forces nontarget bases to become different from the target bases, which increases the separated sound quality.

  • Area-Efficient Microarchitecture for Reinforcement of Turbo Mode

    Shinobu MIWA  Takara INOUE  Hiroshi NAKAMURA  

     
    PAPER-Computer System

      Vol:
    E97-D No:5
      Page(s):
    1196-1210

    Turbo mode, which accelerates many applications without major change of existing systems, is widely used in commercial processors. Since time duration or powerfulness of turbo mode depends on peak temperature of a processor chip, reducing the peak temperature can reinforce turbo mode. This paper presents that adding small amount of hardware allows microprocessors to reduce the peak temperature drastically and then to reinforce turbo mode successfully. Our approach is to find out a few small units that become heat sources in a processor and to appropriately duplicate them for reduction of their power density. By duplicating the limited units and using the copies evenly, the processor can show significant performance improvement while achieving area-efficiency. The experimental result shows that the proposed method achieves up to 14.5% of performance improvement in exchange for 2.8% of area increase.

  • An Improved White-RGB Color Filter Array Based CMOS Imaging System for Cell Phones in Low-Light Environments

    Chang-shuai WANG  Jong-wha CHONG  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E97-D No:5
      Page(s):
    1386-1389

    In this paper, a novel White-RGB (WRGB) color filter array-based imaging system for cell phone is presented to reduce noise and reproduce color in low illumination. The core process is based on adaptive diagonal color separation to recover color components from a white signal using diagonal reference blocks and location-based color ratio estimation in the luminance space. The experiments, which are compared with the RGB and state-of-the-art WRGB approaches, show that our imaging system performs well for various spatial frequency images and color restoration in low-light environments.

  • Past and Future Technology for Mixed Signal LSI Open Access

    Kenichi HATASAKO  Tetsuya NITTA  Masami HANE  Shigeto MAEGAWA  

     
    INVITED PAPER

      Vol:
    E97-C No:4
      Page(s):
    238-244

    This paper discusses Mixed Signal LSI technology with embedded power transistors. Trends in Mixed Signal LSI technology are explained at first. Mixed signal LSI technology has proceeded with the help of fine fabrication technology and SOI technology. The BEOL transistor is a new development, which uses InGaZnO (IGZO) as its TFT channel material. The BEOL transistor is one future device which enables 3D IC and chip shrinking technology.

  • Radiation-Hardened PLL with a Switchable Dual Modular Redundancy Structure

    SinNyoung KIM  Akira TSUCHIYA  Hidetoshi ONODERA  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    325-331

    This paper proposes a radiation-hardened phase-locked loop (RH-PLL) with a switchable dual modular redundancy (DMR) structure. After radiation strikes, unhardened PLLs suffer clock perturbations. Conventional RH-PLLs have been proposed to reduce recovery time after perturbation. However, this recovery still requires tens of clock cycles. Our proposal involves ‘detecting’ and ‘switching’, rather than ‘recovering’ from clock perturbation. Detection speed is crucial for robust perturbation-immunity. We identify types of clock perturbation and then propose a set of detectors to detect each type. With this method, the detectors guarantee high-speed detection that leads to perturbation-immune switching from a radiated clock to an undistorted clock. The proposed RH-PLL was fabricated and then verified with a radiation test on real silicon.

  • Hypersphere Sampling for Accelerating High-Dimension and Low-Failure Probability Circuit-Yield Analysis

    Shiho HAGIWARA  Takanori DATE  Kazuya MASU  Takashi SATO  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    280-288

    This paper proposes a novel and an efficient method termed hypersphere sampling to estimate the circuit yield of low-failure probability with a large number of variable sources. Importance sampling using a mean-shift Gaussian mixture distribution as an alternative distribution is used for yield estimation. Further, the proposed method is used to determine the shift locations of the Gaussian distributions. This method involves the bisection of cones whose bases are part of the hyperspheres, in order to locate probabilistically important regions of failure; the determination of these regions accelerates the convergence speed of importance sampling. Clustering of the failure samples determines the required number of Gaussian distributions. Successful static random access memory (SRAM) yield estimations of 6- to 24-dimensional problems are presented. The number of Monte Carlo trials has been reduced by 2-5 orders of magnitude as compared to conventional Monte Carlo simulation methods.

  • A New Non-data Aided Frequency Offset Estimation Method for OFDM Based Device-to-Device Systems

    Kyunghoon WON  Dongjun LEE  Wonjun HWANG  Hyung-Jin CHOI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:4
      Page(s):
    896-904

    D2D (Device-to-Device) communication has received considerable attention in recent years as one of the key technologies for future communication systems. Among the typical D2D communication systems, FlashLinQ (FLQ) adopted single-tone OFDM (Orthogonal Frequency Division Multiplexing) transmission which enables wide-sense discovery and distributed channel-aware link scheduling. Although synchronization based on a CES (Common External Source) is basically assumed in FLQ, a means to support devices when they are unable to use a CES is still necessary. In most OFDM systems, CFO (Carrier Frequency Offset) induces ICI (Inter Channel Interference) which degrades overall system performance drastically. Especially in D2D systems, ICI can be amplified due to different path losses between link and a precise estimation and correction of CFO is very important. Many CFO estimation algorithms based on DA (Data Aided) and NDA (None Data Aided) were proposed for OFDM systems, but there are several constraint conditions on frequency synchronization in D2D systems. Therefore, in this paper, we propose a new NDA-CFO estimation method for OFDM based D2D systems. The proposed method is based on the characteristics of single-tone OFDM signal, and is composed of two estimation stages: initial estimation and feed-back estimation. In initial estimation, the estimation of CFO is obtained by using two correlation results in a symbol. Also, estimation range can be adaptively defined as the distance between the two windows. In feed-back estimation, the distance between the two correlation results is gradually increased by re-using the estimated CFO and the correlation results. Therefore, more precise CFO estimation can be obtained. A numerical analysis and performance evaluation verify that the proposed method has a large estimation range and achieves precise estimation performance compared to the conventional methods.

  • A Technique of Femtocell Searching in Next-Generation Mobile Communication Systems Using Synchronization Signals

    Yeong Jun KIM  Tae Hwan HONG  Yong Soo CHO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:4
      Page(s):
    817-825

    In this paper, a new technique is proposed to reduce the frequency of cell search by user equipment (UE) in the presence of femtocells. A new common signal (CS) and a separate set of primary synchronization signals (PSSs) are employed to facilitate efficient cell search in a next-geration LTE-based system. The velocity of the UE is also utilized to determine cell search mode. A slow UE recognizes the presence of femtocells using the CS, so that it can make separate searches for macrocells and femtocells. A fast UE will not search for femtocells since the coverage of femtocells is restricted to a small region. The fast UE detects the macrocell boundary using the PSSs transmitted from neighboring macrocells, so that it can search for macrocells only at the macrocell boundary. The effects of CS and UE velocity on the number of cell searches are analyzed. The performance of the proposed technique is evaluated by computer simulations.

  • Discovery of the Optimal Trust Inference Path for Online Social Networks Open Access

    Yao MA  Hongwei LU  Zaobin GAN  

     
    PAPER

      Vol:
    E97-D No:4
      Page(s):
    673-684

    Analysis of the trust network proves beneficial to the users in Online Social Networks (OSNs) for decision-making. Since the construction of trust propagation paths connecting unfamiliar users is the preceding work of trust inference, it is vital to find appropriate trust propagation paths. Most of existing trust network discovery algorithms apply the classical exhausted searching approaches with low efficiency and/or just take into account the factors relating to trust without regard to the role of distrust relationships. To solve the issues, we first analyze the trust discounting operators with structure balance theory and validate the distribution characteristics of balanced transitive triads. Then, Maximum Indirect Referral Belief Search (MIRBS) and Minimum Indirect Functional Uncertainty Search (MIFUS) strategies are proposed and followed by the Optimal Trust Inference Path Search (OTIPS) algorithms accordingly on the basis of the bidirectional versions of Dijkstra's algorithm. The comparative experiments of path search, trust inference and edge sign prediction are performed on the Epinions data set. The experimental results show that the proposed algorithm can find the trust inference path with better efficiency and the found paths have better applicability to trust inference.

  • AC Power Supply Noise Simulation of CMOS Microprocessor with LSI Chip-Package-Board Integrated Model

    Kumpei YOSHIKAWA  Kouji ICHIKAWA  Makoto NAGATA  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    264-271

    An LSI Chip-Package-Board integrated power noise simulation model and its validity is discussed in this paper. A unified power delivery network (PDN) of LSI chip, package, and printed circuit board (PCB) is connected with on-chip power supply current models with capacitor charging expression. The proposed modeling flow is demonstrated for the 32-bit microprocessor in a 1.0V 90nm CMOS technology. The PDN of the system that includes a chip, bonding wires and a printed circuit board is modeled in an equivalent circuit. The on-chip power supply noise monitoring technique and the magnetic probe method is applied for validating simulation results. Simulations and measurements explore power supply noise generation with the dependency on operating frequencies in the wide range from 10MHz to 300MHz, under the operation mode of dynamic frequency scaling, and in the long time operation with various operation codes. It is confirmed that the proposed power supply noise simulation model is helpful for the noise estimation throughout the design phase of the LSI system.

  • A 40-nm Resilient Cache Memory for Dynamic Variation Tolerance Delivering ×91 Failure Rate Improvement under 35% Supply Voltage Fluctuation

    Yohei NAKATA  Yuta KIMI  Shunsuke OKUMURA  Jinwook JUNG  Takuya SAWADA  Taku TOSHIKAWA  Makoto NAGATA  Hirofumi NAKANO  Makoto YABUUCHI  Hidehiro FUJIWARA  Koji NII  Hiroyuki KAWAI  Hiroshi KAWAGUCHI  Masahiko YOSHIMOTO  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    332-341

    This paper presents a resilient cache memory for dynamic variation tolerance in a 40-nm CMOS. The cache can perform sustained operations under a large-amplitude voltage droop. To realize sustained operation, the resilient cache exploits 7T/14T bit-enhancing SRAM and on-chip voltage/temperature monitoring circuit. 7T/14T bit-enhancing SRAM can reconfigure itself dynamically to a reliable bit-enhancing mode. The on-chip voltage/temperature monitoring circuit can sense a precise supply voltage level of a power rail of the cache. The proposed cache can dynamically change its operation mode using the voltage/temperature monitoring result and can operate reliably under a large-amplitude voltage droop. Experimental result shows that it does not fail with 25% and 30% droop of Vdd and it provides 91 times better failure rate with a 35% droop of Vdd compared with the conventional design.

  • An Improved Video Identification Scheme Based on Video Tomography

    Qing-Ge JI  Zhi-Feng TAN  Zhe-Ming LU  Yong ZHANG  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E97-D No:4
      Page(s):
    919-927

    In recent years, with the popularization of video collection devices and the development of the Internet, it is easy to copy original digital videos and distribute illegal copies quickly through the Internet. It becomes a critical task to uphold copyright laws, and this problem will require a technical solution. Therefore, as a challenging problem, copy detection or video identification becomes increasingly important. The problem addressed here is to identify a given video clip in a given set of video sequences. In this paper, an extension to the video identification approach based on video tomography is presented. First, the feature extraction process is modified to enhance the reliability of the shot signature with its size unchanged. Then, a new similarity measurement between two shot signatures is proposed to address the problem generated by the original approach when facing the query shot with a short length. In addition, the query scope is extended from one shot only to one clip (several consecutive shots) by giving a new definition of similarity between two clips and describing a search algorithm which can save much of the computation cost. Experimental results show that the proposed approach is more suitable for identifying shots with short lengths than the original approach. The clip query approach performs well in the experiment and it also shows strong robustness to data loss.

  • Automatic Rectification of Processor Design Bugs Using a Scalable and General Correction Model

    Amir Masoud GHAREHBAGHI  Masahiro FUJITA  

     
    PAPER-Dependable Computing

      Vol:
    E97-D No:4
      Page(s):
    852-863

    This paper presents a method for automatic rectification of design bugs in processors. Given a golden sequential instruction-set architecture model of a processor and its erroneous detailed cycle-accurate model at the micro-architecture level, we perform symbolic simulation and property checking combined with concrete simulation iteratively to detect the buggy location and its corresponding fix. We have used the truth-table model of the function that is required for correction, which is a very general model. Moreover, we do not represent the truth-table explicitly in the design. We use, instead, only the required minterms, which are obtained from the output of our backend formal engine. This way, we avoid adding any new variable for representing the truth-table. Therefore, our correction model is scalable to the number of inputs of the truth-table that could grow exponentially. We have shown the effectiveness of our method on a complex out-of-order superscalar processor supporting atomic execution of instructions. Our method reduces the model size for correction by 6.0x and total correction time by 12.6x, on average, compared to our previous work.

  • A Secure and Efficient Certificateless Aggregate Signature Scheme

    He LIU  Mangui LIANG  Haoliang SUN  

     
    LETTER-Cryptography and Information Security

      Vol:
    E97-A No:4
      Page(s):
    991-995

    In this letter, we propose a new secure and efficient certificateless aggregate signature scheme which has the advantages of both certificateless public key cryptosystem and aggregate signature. Based on the computational Diffie-Hellman problem, our scheme can be proven existentially unforgeable against adaptive chosen-message attacks. Most importantly, our scheme requires short group elements for aggregate signature and constant pairing computations for aggregate verification, which leads to high efficiency due to no relations with the number of signers.

  • Effective Frame Selection for Blind Source Separation Based on Frequency Domain Independent Component Analysis

    Yusuke MIZUNO  Kazunobu KONDO  Takanori NISHINO  Norihide KITAOKA  Kazuya TAKEDA  

     
    PAPER-Engineering Acoustics

      Vol:
    E97-A No:3
      Page(s):
    784-791

    Blind source separation is a technique that can separate sound sources without such information as source location, the number of sources, and the utterance content. Multi-channel source separation using many microphones separates signals with high accuracy, even if there are many sources. However, these methods have extremely high computational complexity, which must be reduced. In this paper, we propose a computational complexity reduction method for blind source separation based on frequency domain independent component analysis (FDICA) and examine temporal data that are effective for source separation. A frame with many sound sources is effective for FDICA source separation. We assume that a frame with a low kurtosis has many sound sources and preferentially select such frames. In our proposed method, we used the log power spectrum and the kurtosis of the magnitude distribution of the observed data as selection criteria and conducted source separation experiments using speech signals from twelve speakers. We evaluated the separation performances by the signal-to-interference ratio (SIR) improvement score. From our results, the SIR improvement score was 24.3dB when all the frames were used, and 23.3dB when the 300 frames selected by our criteria were used. These results clarified that our proposed selection criteria based on kurtosis and magnitude is effective. Furthermore, we significantly reduced the computational complexity because it is proportional to the number of selected frames.

  • Digital Background Calibration for a 14-bit 100-MS/s Pipelined ADC Using Signal-Dependent Dithering

    Zhao-xin XIONG  Min CAI  Xiao-Yong HE  Yun YANG  

     
    PAPER-Electronic Circuits

      Vol:
    E97-C No:3
      Page(s):
    207-214

    A digital background calibration technique using signal-dependent dithering is proposed, to correct the nonlinear errors which results from capacitor mismatches and finite opamp gain in pipelined analog-to-digital converter (ADC). Large magnitude dithers are used to measure and correct both errors simultaneously in background. In the proposed calibration system, the 2.5-bit capacitor-flip-over multiplying digital-to-analog converter (MDAC) stage is modified for the injection of large magnitude dithering by adding six additional comparators, and thus only three correction parameters in every stage subjected to correction were measured and extracted by a simple calibration algorithm with multibit first stage. Behavioral simulation results show that, using the proposed calibration technique, the signal-to-noise-and-distortion ratio improves from 63.3 to 79.3dB and the spurious-free dynamic range is increased from 63.9 to 96.4dB after calibrating the first two stages, in a 14-bit 100-MS/s pipelined ADC with σ=0.2% capacitor mismatches and 60dB nonideal opamp gain. The time of calibrating the first two stages is around 1.34 seconds for the modeled ADC.

  • Circuit Description and Design Flow of Superconducting SFQ Logic Circuits Open Access

    Kazuyoshi TAKAGI  Nobutaka KITO  Naofumi TAKAGI  

     
    INVITED PAPER

      Vol:
    E97-C No:3
      Page(s):
    149-156

    Superconducting Single-Flux-Quantum (SFQ) devices have been paid much attention as alternative devices for digital circuits, because of their high switching speed and low power consumption. For large-scale circuit design, the role of computer-aided design environment is significant. As the characteristics of the SFQ devices are different from conventional devices, a new design environment is required. In this paper, we propose a new timing-aware circuit description method which can be used for SFQ circuit design. Based on the description and the dedicated algorithms we have been developing for SFQ logic circuit design, we propose an integrated design flow for SFQ logic circuits. We have designed a circuit using our developed design tools along with the design flow and demonstrated the correct operation.

  • Large-Scale Integrated Circuit Design Based on a Nb Nine-Layer Structure for Reconfigurable Data-Path Processors Open Access

    Akira FUJIMAKI  Masamitsu TANAKA  Ryo KASAGI  Katsumi TAKAGI  Masakazu OKADA  Yuhi HAYAKAWA  Kensuke TAKATA  Hiroyuki AKAIKE  Nobuyuki YOSHIKAWA  Shuichi NAGASAWA  Kazuyoshi TAKAGI  Naofumi TAKAGI  

     
    INVITED PAPER

      Vol:
    E97-C No:3
      Page(s):
    157-165

    We describe a large-scale integrated circuit (LSI) design of rapid single-flux-quantum (RSFQ) circuits and demonstrate several reconfigurable data-path (RDP) processor prototypes based on the ISTEC Advanced Process (ADP2). The ADP2 LSIs are made up of nine Nb layers and Nb/AlOx/Nb Josephson junctions with a critical current density of 10kA/cm2, allowing higher operating frequencies and integration. To realize truly large-scale RSFQ circuits, careful design is necessary, with several compromises in the device structure, logic gates, and interconnects, balancing the competing demands of integration density, design flexibility, and fabrication yield. We summarize numerical and experimental results related to the development of a cell-based design in the ADP2, which features a unit cell size reduced to 30-µm square and up to four strip line tracks in the unit cell underneath the logic gates. The ADP LSIs can achieve ∼10 times the device density and double the operating frequency with the same power consumption per junction as conventional LSIs fabricated using the Nb four-layer process. We report the design and test results of RDP processor prototypes using the ADP2 cell library. The RDP processors are composed of many arrays of floating-point units (FPUs) and switch networks, and serve as accelerators in a high-performance computing system. The prototypes are composed of two-dimensional arrays of several arithmetic logic units instead of FPUs. The experimental results include a successful demonstration of full operation and reconfiguration in a 2×2 RDP prototype made up of 11.5k junctions at 45GHz after precise timing design. Partial operation of a 4×4 RDP prototype made up of 28.5k-junctions is also demonstrated, indicating the scalability of our timing design.

  • A Priority-Based Temperature-Aware Routing Protocol for Wireless Body Area Networks

    Christian Henry Wijaya OEY  Sangman MOH  

     
    PAPER

      Vol:
    E97-B No:3
      Page(s):
    546-554

    One of the most important requirements for a routing protocol in wireless body area networks (WBANs) is to lower the network's temperature increase. The temperature of a node is closely related to its activities. The proactive routing approach, which is used by existing routing protocols for WBANs, tends to produce a higher temperature increase due to more frequent activities, compared to the on-demand reactive routing approach. In this paper, therefore, we propose a reactive routing protocol for WBANs called priority-based temperature-aware routing (PTR). In addition to lowering the temperature increase, the protocol also recognizes vital nodes and prioritizes them so they are able to achieve higher throughput. Simulation results show that the PTR protocol achieves a 50% lower temperature increase compared to the conventional temperature-aware routing protocol and is able to improve throughput of vital nodes by 35% when the priority mode is enabled.

  • Digital Chaotic Signal Generator Using Robust Chaos in Compound Sinusoidal Maps

    Chatchai WANNABOON  Wimol SAN-UM  

     
    LETTER

      Vol:
    E97-A No:3
      Page(s):
    781-783

    This paper presents an implementation of a digital chaotic signal generator based on compound one-dimensional sinusoidal maps. The proposed chaotic map not only offers high chaoticity measured from a positive lyapunov exponent but also provides diverse bifurcation structures with robust chaos over most regions of parameter spaces. Implementation on FPGA realizes small number of components and offers a highly random chaotic sequence with no autocorrelation. The proposed chaotic signal generator offers a potential alternative in random test pattern generation or in secured data communication applications.

581-600hit(2667hit)