The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ESIGN(888hit)

481-500hit(888hit)

  • Low-Power Design of High-Speed A/D Converters

    Shoji KAWAHITO  Kazutaka HONDA  Masanori FURUTA  Nobuhiro KAWAI  Daisuke MIYAZAKI  

     
    INVITED PAPER

      Vol:
    E88-C No:4
      Page(s):
    468-478

    In this paper, low-power design techniques of high-speed A/D converters are reviewed and discussed. Pipeline and parallel-pipeline architectures are treated as these are dominant architectures when required high sampling rate and high resolution with reasonable power dissipation. A systematic approach to the power optimization of pipeline and parallel pipeline ADC's is introduced based on models of noise analysis and response time of a building block in the multiple-stage pipeline ADC. Finally, the theoretical minimum of required power as functions of the sampling rate, resolution and SNR is discussed. The analysis shows that, with the developments of new circuits and systems to approach to the minimum, the power can be further reduced by a factor of more than 1/10 without changing the basic architectures.

  • DMFQ: Hardware Design of Flow-Based Queue Management Scheme for Improving the Fairness

    Norio YAMAGAKI  Hideki TODE  Koso MURAKAMI  

     
    PAPER

      Vol:
    E88-B No:4
      Page(s):
    1413-1423

    Recently, various types of traffic have increased on the Internet with the development of broadband networks. However, it is difficult to guarantee QoS for each traffic type in current network environments. Moreover, it has been reported that bandwidth can be allocated to flows unfairly, and this can be an important issue for QoS guarantees. Therefore, we have proposed a flow-based queue management scheme, called Dual Metrics Fair Queueing (DMFQ), to improve the fairness and QoS per flow. DMFQ discards arrival packets by considering not only the arrival rate per flow but also the flow succession time. In addition, we have confirmed the effectiveness of DMFQ through several computer simulations. In this paper, we implement DMFQ with hardware for high-speed operation. Concretely, we propose the design policies and show the hardware design results.

  • SPFD-Based Flexible Transformation of LUT-Based FPGA Circuits

    Katsunori TANAKA  Shigeru YAMASHITA  Yahiko KAMBAYASHI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E88-A No:4
      Page(s):
    1038-1046

    In this paper, we present the condition for the effective wire addition in Look-Up-Table-based (LUT-based) field programmable gate array (FPGA) circuits, and an optimization procedure utilizing the effective wire addition. Each wire has different characteristics, such as delay and power dissipation. Therefore, the replacement of one critical wire for the circuit performance with many non-critical ones, i.e., many-addition-for-one-removal (m-for-1) is sufficiently useful. However, the conventional logic optimization methods based on sets of pairs of functions to be distinguished (SPFDs) for LUT-based FPGA circuits do not make use of the m-for-1 manipulation, and perform only simple replacement and removal, i.e., the one-addition-for-one-removal (1-for-1) manipulation and the no-addition-for-one-removal (0-for-1) manipulation, respectively. Since each LUT can realize an arbitrary internal function with respect to a specified number of input variables, there is no sufficient condition at the logic design level for simple wire addition. Moreover, in general, simple addition of a wire has no effects for removal of another wire, and it is important to derive the condition for non-simple and effective wire addition. We found the SPFD-based condition that wire addition is likely to make another wire redundant or replaceable, and developed an optimization procedure utilizing this effective wire addition. According to the experimental results, when we focused on the delay reduction of LUT-based FPGA circuits, our method reduced the delay by 24.2% from the initial circuits, while the conventional SPFD-based logic optimization and the enhanced global rewiring reduced it by 14.2% and 18.0%, respectively. Thus, our method presented in this paper is sufficiently practical, and is expected to improve the circuit performance.

  • An Integrated Approach of Variable Ordering and Logic Mapping into LUT-Array-Based PLD

    Tomonori IZUMI  Shin'ichi KOUYAMA  Hiroyuki OCHI  Yukihiro NAKAMURA  

     
    PAPER

      Vol:
    E88-A No:4
      Page(s):
    907-914

    This paper presents an approach of logic mapping into LUT-Array-Based PLD where Boolean functions in the form of the sum of generalized complex terms (SGCTs) can be mapped directly. While previous mapping approach requires predetermined variable ordering, our approach performs mapping and variable reordering simultaneously. For the purpose, we propose a directed acyclic graph based on the multiple-valued decision diagram (MDD) and an algorithm to construct the graph. Our algorithm generates candidates of SGCT expressions for each node in a bottom-up manner and selects the variables in the current level by evaluating the sizes of SGCT expressions directly. Experimental results show that our approach reduces the number of terms maximum to 71 percent for the MCNC benchmark circuits.

  • Diagnosis of Timing Faults in Scan Chains Using Single Excitation Patterns

    James Chien-Mo LI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E88-A No:4
      Page(s):
    1024-1030

    A diagnosis technique is presented to locate at least one fault in a scan chain with multiple timing faults. This diagnosis technique applies Single Excitation (SE) patterns of which only one bit can be flipped even in the presence of multiple faults. By applying the SE patterns, the problem of simulations with unknown values is eliminated. The diagnosis result is therefore deterministic, not probabilistic. Experiments on the ISCAS benchmark circuits show that the average diagnosis resolution is less than ten scan cells.

  • A 13.56 MHz CMOS RF Identification Passive Tag LSI with Ferroelectric Random Access Memory

    Shoichi MASUI  Toshiyuki TERAMOTO  

     
    INVITED PAPER

      Vol:
    E88-C No:4
      Page(s):
    601-607

    A radio frequency identification tag LSI operating with the carrier frequency of 13.56 MHz as well as storing nonvolatile information in embedded ferroelectric random access memory (FeRAM) has been developed. A full wave rectifier composed of PMOS transistor diodes and NMOS transistor switches achieves RF-to-DC power conversion efficiency over 54%. The entire 16 kbits write and read transaction time can be reduced to 2.1 sec by the use of FeRAM, which corresponds to 2.2 times speed enhancement over conventional EEPROM based tag LSIs. The communication range of the FeRAM based tag LSI can be effectively improved by storing antitheft information in a ferroelectric nonvolatile flip-flop, which can reduce the power consumption of FeRAM from 27 µW to 5 µW. The communication range for the antitheft gate system becomes 70 cm.

  • Bitwidth Optimization for Low Power Digital FIR Filter Design

    Kosuke TARUMI  Akihiko HYODO  Masanori MUROYAMA  Hiroto YASUURA  

     
    PAPER

      Vol:
    E88-A No:4
      Page(s):
    869-875

    We propose a novel approach for designing a low power datapath in wireless communication systems. Especially, we focus on the digital FIR filter. Our proposed approach can reduce the power consumption and the circuit area of the digital FIR filter by optimizing the bitwidth of the each filter coefficient with keeping the filter calculation accuracy. At first, we formulate the constraints about keeping accuracy of the filter calculations. We define the problem to find the optimized bitwidth of each filter coefficient. Our defined problem can be solved by using the commercial optimization tool. We evaluate the effects of consuming power reduction by comparing the digital FIR filters designed in the same bitwidth of all coefficients. We confirm that our approach is effective for a low power digital FIR filter.

  • A Genetic Algorithm for Routing with an Upper Bound Constraint

    Jun INAGAKI  Miki HASEYAMA  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E88-D No:3
      Page(s):
    679-681

    This paper presents a method of searching for the shortest route via the most designated points with the length not exceeding the preset upper bound. The proposed algorithm can obtain the quasi-optimum route efficiently and its effectiveness is verified by applying the algorithm to the actual map data.

  • Security and Performance Evaluation of ESIGN and RSA on IC Cards by Using Byte-Unit Modular Algorithms

    Chung-Huang YANG  Hikaru MORITA  Tatsuaki OKAMOTO  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E88-B No:3
      Page(s):
    1244-1248

    Digital signature is by far one of the most important cryptographic techniques used in the e-government and e-commerce applications. It provides authentication of senders or receivers and offers non-repudiation of transmission (senders cannot deny their digital signature in the signed documents and the document cannot be altered in transmission without being detected). This paper presents our implementation results of digital signature algorithms on IC cards by using byte-unit modular arithmetic algorithm method. We evaluated the performance of well-known ESIGN and RSA digital signature algorithms on the dedicated IC card chips and showed that ESIGN is more efficient than RSA.

  • New Criteria of Selective Orthogonal Matrix Least-Squares Method for Macromodeling Multiport Networks Characterized by Sampled Data

    Yuichi TANJI  Masaya SUZUKI  Takayuki WATANABE  Hideki ASAI  

     
    PAPER

      Vol:
    E88-A No:2
      Page(s):
    524-532

    This paper presents the selective orthogonal matrix least-squares (SOM-LS) method for representing a multiport network characterized by sampled data with the rational matrix, improving the previous works, and providing new criteria. Recently, it is needed in a circuit design to evaluate physical effects of interconnects and package, and the evaluation is done by numerical electromagnetic analysis or measurement by network analyzer. Here, the SOM-LS method with the criteria will play an important role for generating the macromodels of interconnects and package in circuit simulation level. The accuracy of the macromodels is predictable and controllable, that is, the SOM-LS method fits the rational matrix to the sampled data, selecting the dominant poles of the rational matrix. In examples, simple PCB models are analyzed, where the rational matrices are described by Verilog-A, and some simulations are carried out on a commercial circuit simulator.

  • Prioritized Call Admission Design for Providing Video Telephone Services in WCDMA Networks

    Hyong Rock PARK  Dongwoo KIM  Een-Kee HONG  

     
    LETTER-Network

      Vol:
    E88-B No:2
      Page(s):
    770-774

    Video telephone service (VTS) is considered one of promising services provided in wideband CDMA (WCDMA) networks. Without a designated call admission policy, VTS calls are expected to suffer from relatively high probability of blocking since they normally have more stringent signal quality requirement than ordinary voice calls. In this letter, we consider a prioritized call admission design in order to reduce the blocking probability of VTS calls, which may encourage the users to access the newly-provided VTS in a more comfortable way. The VTS calls are given a priority by reserving a number of channel-processing equipments. With the reservation, the blocking probability of prioritized VTS calls can be reduced evidently. That of ordinary calls, however, is increasing instead. This letter provides a system model that counts the blocking probabilities of VTS and ordinary calls simultaneously, and numerically examines an adequate level of the prioritization for VTS calls. The results show that the prioritization level should be selected depending on received interference as well as bandwidth required for VTS.

  • Generalized Vickrey Auction and Suppression of Active Adversary Using Incentive-Compatible Implementation

    Makoto YOKOO  Koutarou SUZUKI  

     
    PAPER-Application

      Vol:
    E88-A No:1
      Page(s):
    255-261

    This paper presents an attempt to make rational active adversary passive using mechanism design. We propose a secure Generalized Vickrey Auction (GVA) scheme where the procedure executed by a bidder affects neither the prices nor the allocation of the bidder. Therefore, a bidder does not have an incentive to be an active adversary.

  • Annealing Algorithm Applied in Optimum Design of 2.4 GHz and 5.2 GHz Dual-Wideband Microstrip Line Filters

    Mao-Hsiu HSU  Jhin-Fang HUANG  

     
    PAPER

      Vol:
    E88-C No:1
      Page(s):
    47-56

    This paper presents a computer-aided design procedure of simulated annealing algorithm to optimize dual-wideband microstrip line filters with symmetrical at least 500 MHz bandwidths respectively. This method demonstrates the superiority of designing microstrip line dual-band filters. The value of characteristic impedances and electrical lengths of transmission lines synthesizing 2.4 GHz and 5.2 GHz dualband filters with a single input and a single output are adjusted to the annealing process by the optimization algorithm. The fabricated dual-wideband spectral transmittance and reflectance curves of these filters applying this method all effectively achieved desired high performances and resulted in a lower cost dual-band filters and open the way to commercial mass production. The method is applicable not only in 2.4 GHz and 5.2 GHz, but can be applied to any other multi-frequency bands.

  • Broadband Multi-Way Microstrip Power Dividers

    Mitsuyoshi KISHIHARA  Kuniyoshi YAMANE  Isao OHTA  Tadashi KAWAI  

     
    PAPER

      Vol:
    E88-C No:1
      Page(s):
    20-27

    This paper treats multi-way microstrip power dividers composed of multi-step, multi-furcation, and corners. Since the design procedure is founded on the planar circuit approach in combination with the segmentation method, optimization of the circuit configuration can be performed in a reasonable short computation time when applying the Powell's optimization algorithm. Actually, broadband 3- and 4-way power dividers with mitered bends are designed, and fractional bandwidths of about 90% and 100% are realized for the power-split imbalance less than 0.2 dB and the return loss better than -20 dB, respectively. The validity of the design results is confirmed by an EM-simulator (HFSS) and experiments.

  • SoC Architecture Synthesis Methodology Based on High-Level IPs

    Michiaki MURAOKA  Hiroaki NISHI  Rafael K. MORIZAWA  Hideaki YOKOTA  Yoichi ONISHI  

     
    PAPER-System Level Design

      Vol:
    E87-A No:12
      Page(s):
    3057-3067

    We propose a sophisticated synthesis methodology for SoC (System-on-Chip) architectures from the system level specification based on reusable high-level IPs named as Virtual Cores (VCores), in this paper. This synthesis methodology generates an initial architecture that consists of a CPU, buses, IPs, peripherals, I/Os and an RTOS (Real Time Operating System), as well as making tradeoffs to the architecture, between hardware and software on assigned software VCores and hardware VCores. The results of an architecture level design experiment, using the proposed methodology, shows that the partial automation of the architecture synthesis process, allied with design reuse, accelerates the architecture design, therefore, reducing the time required to design an architecture of SoC.

  • A Low-Power Architecture for Extended Finite State Machines Using Input Gating

    Shi-Yu HUANG  Chien-Jyh LIU  

     
    PAPER-Logic Synthesis

      Vol:
    E87-A No:12
      Page(s):
    3109-3115

    In this paper, we investigate a low-power architecture for designs modeled as an Extended Finite State Machine (EFSM). It is based on the general dynamic power management concept, in which the redundant computation can be dynamically disabled to reduce the overall power dissipation. The contribution of this paper is mainly a systematic procedure to identify almost maximal amount of redundant computation in a design given as an EFSM. There are two levels of redundant computation to be exploited--one is based on the machine state information, while the other is based on the transition information. After the extraction of the redundant computation, a low-power architecture using input gating is proposed to synthesize the final circuit. We tested the technique on a design computing a number's modulo inverse. Experimental results show that 31% power reduction can be achieved at the costs of 2% timing penalty and 16% area overhead.

  • Test Architecture Optimization for System-on-a-Chip under Floorplanning Constraints

    Makoto SUGIHARA  Kazuaki MURAKAMI  Yusuke MATSUNAGA  

     
    PAPER-Test

      Vol:
    E87-A No:12
      Page(s):
    3174-3184

    In this paper, a test architecture optimization for system-on-a-chip under floorplanning constraints is proposed. The models of previous test architecture optimizations were too ideal to be applied to industrial SOCs. To make matters worse, they couldn't treat topological locality of cores, that is, floorplanning constraints. The optimization proposed in this paper can avoid long wires for TAMs in consideration of floorplanning constraints and finish optimizing test architectures within reasonable computation time.

  • A Design Scheme for Delay Testing of Controllers Using State Transition Information

    Tsuyoshi IWAGAKI  Satoshi OHTAKE  Hideo FUJIWARA  

     
    PAPER-Test

      Vol:
    E87-A No:12
      Page(s):
    3200-3207

    This paper presents a non-scan design scheme to enhance delay fault testability of controllers. In this scheme, we utilize a given state transition graph (STG) to test delay faults in its synthesized controller. The original behavior of the STG is used during test application. For faults that cannot be detected by using the original behavior, we design an extra logic, called an invalid test state and transition generator, to make those faults detectable. Our scheme allows achieving short test application time and at-speed testing. We show the effectiveness of our method by experiments.

  • Automatic Extraction of Layout-Dependent Substrate Effects for RF MOSFET Modeling

    Zhao LI  Ravikanth SURAVARAPU  Kartikeya MAYARAM  C.-J. Richard SHI  

     
    PAPER-Device Modeling

      Vol:
    E87-A No:12
      Page(s):
    3309-3317

    This paper presents CrtSmile--a CAD tool for the automatic extraction of layout-dependent substrate effects for RF MOSFET modeling. CrtSmile incorporates a new scalable substrate model, which depends not only on the geometric layout information of a transistor (the number of gate fingers, finger width, channel length and bulk contact location), but also on the transistor layout and bulk patterns. We show that this model is simple to extract and has good agreement with measured data for a 0.35 µm CMOS process. CrtSmile reads in the layout information of RF transistors in the CIF/GDSII format, performs a pattern-based layout extraction to recognize the transistor layout and bulk patterns. A scalable layout-dependent substrate model is automatically generated and attached to the standard BSIM3 device model as a sub-circuit for use in circuit simulation. A low noise amplifier is evaluated with the proposed CrtSmile tool, showing the importance of layout effects for RF transistor substrate modeling.

  • Power Modeling of Synthesizable Soft Macros

    Kyung Tae DO  Yang Hyo KIM  Young Hwan KIM  Jung Yun CHOI  

     
    PAPER-System Level Design

      Vol:
    E87-A No:12
      Page(s):
    3091-3099

    We present a new approach to the power modeling of synthesizable soft macros, which uses the characteristics of individual input signals for high accuracy. We also present the parameterized power model, developed using the proposed approach, which can relieve us from the power characterization for all possible macro sizes. Extensive experiments illustrate that the proposed approaches exhibit the overall modeling errors below 4.24% and 4.71% for benchmark macros before and after parameterization, when compared with the results of gate-level analysis.

481-500hit(888hit)