Baoquan ZHONG Zhiqun CHENG Minshi JIA Bingxin LI Kun WANG Zhenghao YANG Zheming ZHU
Kazuya TADA
Suguru KURATOMI Satoshi USUI Yoko TATEWAKI Hiroaki USUI
Yoshihiro NAKA Masahiko NISHIMOTO Mitsuhiro YOKOTA
Hiroki Hoshino Kentaro Kusama Takayuki Arai
Tsuneki YAMASAKI
Kengo SUGAHARA
Cuong Manh BUI Hiroshi SHIRAI
Hiroyuki DEGUCHI Masataka OHIRA Mikio TSUJI
Hiroto Tochigi Masakazu Nakatani Ken-ichi Aoshima Mayumi Kawana Yuta Yamaguchi Kenji Machida Nobuhiko Funabashi Hideo Fujikake
Yuki Imamura Daiki Fujii Yuki Enomoto Yuichi Ueno Yosei Shibata Munehiro Kimura
Keiya IMORI Junya SEKIKAWA
Naoki KANDA Junya SEKIKAWA
Yongzhe Wei Zhongyuan Zhou Zhicheng Xue Shunyu Yao Haichun Wang
Mio TANIGUCHI Akito IGUCHI Yasuhide TSUJI
Kouji SHIBATA Masaki KOBAYASHI
Zhi Earn TAN Kenjiro MATSUMOTO Masaya TAKAGI Hiromasa SAEKI Masaya TAMURA
Misato ONISHI Kazuhiro YAMAGUCHI Yuji SAKAMOTO
Koya TANIKAWA Shun FUJII Soma KOGURE Shuya TANAKA Shun TASAKA Koshiro WADA Satoki KAWANISHI Takasumi TANABE
Shotaro SUGITANI Ryuichi NAKAJIMA Keita YOSHIDA Jun FURUTA Kazutoshi KOBAYASHI
Ryosuke Ichikawa Takumi Watanabe Hiroki Takatsuka Shiro Suyama Hirotsugu Yamamoto
Chan-Liang Wu Chih-Wen Lu
Umer FAROOQ Masayuki MORI Koichi MAEZAWA
Ryo ITO Sumio SUGISAKI Toshiyuki KAWAHARAMURA Tokiyoshi MATSUDA Hidenori KAWANISHI Mutsumi KIMURA
Paul Cain
Arie SETIAWAN Shu SATO Naruto YONEMOTO Hitoshi NOHMI Hiroshi MURATA
Seiichiro Izawa
Hang Liu Fei Wu
Keiji GOTO Toru KAWANO Ryohei NAKAMURA
Takahiro SASAKI Yukihiro KAMIYA
Xiang XIONG Wen LI Xiaohua TAN Yusheng HU
Tohgo HOSODA Kazuyuki SAITO
Yihan ZHU Takashi OHSAWA
Shengbao YU Fanze MENG Yihan SHEN Yuzhu HAO Haigen ZHOU
Tai TANAKA Yoshio INASAWA Naofumi YONEDA Hiroaki MIYASHITA
A method is proposed for improving the accuracy of the characteristic basis function method (CBFM) using the multilevel approach. With this technique, CBFs taking into account multiple scattering calculated for each block (IP-CBFs; improved primary CBFs) are applied to CBFM using a multilevel approach. By using IP-CBFs, the interaction between blocks is taken into account, and thus it is possible to reduce the number of CBFs while maintaining accuracy, even if the multilevel approach is used. The radar cross section (RCS) of a cube, a cavity, and a dielectric sphere were analyzed using the proposed CBFs, and as a result it was found that accuracy is improved over the conventional method, despite no major change in the number of CBFs.
Keonil KANG Kyung-Young JUNG Sang Won NAM
Recently, H-bridge pulse width modulation (PWM) micro-stepping motor drivers have been widely used for 3-D printers, robots, and medical instruments. Differently from a simple PWM motor driver circuit, the H-bridge PWM micro-stepping motor driver circuit can generate radio frequency (RF) electromagnetic interference (EMI) noises of up to several hundred MHz frequencies, due to digital interface circuits and a high-performance CPU. For medical instrument systems, the minimization of EMI noises can assure operating safety and greatly reduce the chance of malfunction between instruments. This work proposes a passive-filter configuration-based circuit design for reducing up-to-several-hundred-MHz EMI noises generated from the H-bridge PWM micro-stepping motor driver circuit. More specifically, the proposed RF EMI reduction approach consists of proper passive filter design, shielding in motor wires, and common ground design in the print circuit board. The proposed passive filter configuration design is validated through the overall reduction of EMI noises at RF band. Finally, the proposed EMI reduction approach is tested experientially through a prototype and about 16 dB average reduction of RF EMI noises is demonstrated.
Koichi TAKIGUCHI Takaaki NAKAGAWA Takaaki MIWA
We propose and demonstrate a method that can demultiplex an optical OFDM signal with various capacity based on time lens-based optical Fourier transform. The proposed tunable optical OFDM signal demultiplexer is composed of a phase modulator and a tunable chromatic dispersion emulator. The spectrum of the variable capacity OFDM signal is transformed into Nyquist time-division multiplexing pulses with the optical Fourier transform, and the OFDM sub-carrier channels are dumultiplexed in the time-domain. We also propose a simple method for approximating and generating quadratic waveform to drive the phase modulator. After explaining the operating principle of the method and the design of some parameters in detail, we show successful demultiplexing of 4×8 and 4×10 Gbit/s optical OFDM signals with our proposed method as the preliminary investigation results.
Yasunori SUZUKI Junya OHKAWARA Shoichi NARAHASHI
This paper proposes a method for reducing the peak-to-average power ratio (PAPR) at the output signal of a digital predistortion linearizer (DPDL) that compensates for frequency dependent intermodulation distortion (IMD) components. The proposed method controls the amplitude and phase values of the frequency components corresponding to the transmission bandwidth of the output signal. A DPDL employing the proposed method simultaneously provides IMD component cancellation of out-of-band components and PAPR reduction at the output signal. This paper identifies the amplitude and phase conditions to minimize the PAPR. Experimental results based on a 2-GHz band 1-W class power amplifier show that the proposed method improves the drain efficiency of the power amplifier when degradation is allowed in the error vector magnitude. To the best knowledge of the authors, this is the first PAPR reduction method for DPDL that reduces the PAPR while simultaneously compensating for IMD components.
Bangan LIU Yun WANG Jian PANG Haosheng ZHANG Dongsheng YANG Aravind Tharayil NARAYANAN Dae Young LEE Sung Tae CHOI Rui WU Kenichi OKADA Akira MATSUZAWA
An energy efficient modulator for an ultra-low-power (ULP) 60-GHz IEEE transmitter is presented in this paper. The modulator consists of a differential duobinary coder and a semi-digital finite-impulse-response (FIR) pulse-shaping filter. By virtue of differential duobinary coding and pulse shaping, the transceiver successfully solves the adjacent-channel-power-ratio (ACPR) issue of conventional on-off-keying (OOK) transceivers. The proposed differential duobinary code adopts an over-sampling precoder, which relaxes timing requirement and reduces power consumption. The semi-digital FIR eliminates the power hungry digital multipliers and accumulators, and improves the power efficiency through optimization of filter parameters. Fabricated in a 65nm CMOS process, this modulator occupies a core area of 0.12mm2. With a throughput of 1.7Gbps/2.6Gbps, power consumption of modulator is 24.3mW/42.8mW respectively, while satisfying the IEEE 802.11ad spectrum mask.
Takahiro HASHIMOTO Takayuki NAKANISHI Yoshio INASAWA Yasuhiro NISHIOKA Hiroaki MIYASHITA
The method for estimating propagation loss that classifies receiving points into multiple groups by focusing on the number of reflections and diffractions, and applies a separate statistical model to each group was extended from only 2.4 GHz band to both 2.4 GHz and 5 GHz band. The extended statistical model was created from received power measurements. First, an appropriate grouping method was investigated based on the fitting error of statistical model. Non-line-of-sight (NLOS) receiving points were grouped in order of points that a wave reflected one time reaches, points that a wave reflected two times reaches, and points that a wave diffracted one time reaches. Next, the effectiveness of the proposed method was verified by comparison with conventional statistical models (one-slope, dual-slope, multi-wall, partitioned) on three office floors that differ from the environment used to create the statistical model. The average NLOS estimation error for the three evaluation environments was 4.9 dB, demonstrating that the proposed method has accuracy equal to or better than that of conventional methods.
Leiou WANG Donghui WANG Chengpeng HAO
SUMPLE, one of important signal combining approaches, its combining loss increases when a sensor in an array fails. A novel failure detection circuit for SUMPLE is proposed by using variability index. This circuit can effectively judge whether a sensor fails or not. Simulation results validate its effectiveness with respect to the existing algorithms.