The search functionality is under construction.
The search functionality is under construction.

IEICE TRANSACTIONS on Electronics

  • Impact Factor

    0.63

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.3

Advance publication (published online immediately after acceptance)

Volume E101-C No.2  (Publication Date:2018/02/01)

    Regular Section
  • Accuracy Improvement of Characteristic Basis Function Method by Using Multilevel Approach

    Tai TANAKA  Yoshio INASAWA  Naofumi YONEDA  Hiroaki MIYASHITA  

     
    PAPER-Electromagnetic Theory

      Page(s):
    96-103

    A method is proposed for improving the accuracy of the characteristic basis function method (CBFM) using the multilevel approach. With this technique, CBFs taking into account multiple scattering calculated for each block (IP-CBFs; improved primary CBFs) are applied to CBFM using a multilevel approach. By using IP-CBFs, the interaction between blocks is taken into account, and thus it is possible to reduce the number of CBFs while maintaining accuracy, even if the multilevel approach is used. The radar cross section (RCS) of a cube, a cavity, and a dielectric sphere were analyzed using the proposed CBFs, and as a result it was found that accuracy is improved over the conventional method, despite no major change in the number of CBFs.

  • Passive-Filter-Configuration-Based Reduction of Up-to-Several-Hundred-MHz EMI Noises in H-Bridge PWM Micro-Stepping Motor Driver Circuits

    Keonil KANG  Kyung-Young JUNG  Sang Won NAM  

     
    PAPER-Electromagnetic Theory

      Page(s):
    104-111

    Recently, H-bridge pulse width modulation (PWM) micro-stepping motor drivers have been widely used for 3-D printers, robots, and medical instruments. Differently from a simple PWM motor driver circuit, the H-bridge PWM micro-stepping motor driver circuit can generate radio frequency (RF) electromagnetic interference (EMI) noises of up to several hundred MHz frequencies, due to digital interface circuits and a high-performance CPU. For medical instrument systems, the minimization of EMI noises can assure operating safety and greatly reduce the chance of malfunction between instruments. This work proposes a passive-filter configuration-based circuit design for reducing up-to-several-hundred-MHz EMI noises generated from the H-bridge PWM micro-stepping motor driver circuit. More specifically, the proposed RF EMI reduction approach consists of proper passive filter design, shielding in motor wires, and common ground design in the print circuit board. The proposed passive filter configuration design is validated through the overall reduction of EMI noises at RF band. Finally, the proposed EMI reduction approach is tested experientially through a prototype and about 16 dB average reduction of RF EMI noises is demonstrated.

  • Demultiplexing Method of Variable Capacity Optical OFDM Signal Using Time Lens-Based Optical Fourier Transform Open Access

    Koichi TAKIGUCHI  Takaaki NAKAGAWA  Takaaki MIWA  

     
    PAPER-Optoelectronics

      Page(s):
    112-117

    We propose and demonstrate a method that can demultiplex an optical OFDM signal with various capacity based on time lens-based optical Fourier transform. The proposed tunable optical OFDM signal demultiplexer is composed of a phase modulator and a tunable chromatic dispersion emulator. The spectrum of the variable capacity OFDM signal is transformed into Nyquist time-division multiplexing pulses with the optical Fourier transform, and the OFDM sub-carrier channels are dumultiplexed in the time-domain. We also propose a simple method for approximating and generating quadratic waveform to drive the phase modulator. After explaining the operating principle of the method and the design of some parameters in detail, we show successful demultiplexing of 4×8 and 4×10 Gbit/s optical OFDM signals with our proposed method as the preliminary investigation results.

  • PAPR Reduction Method for Digital Predistortion Linearizer Compensating for Frequency Dependent IMD Components

    Yasunori SUZUKI  Junya OHKAWARA  Shoichi NARAHASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Page(s):
    118-125

    This paper proposes a method for reducing the peak-to-average power ratio (PAPR) at the output signal of a digital predistortion linearizer (DPDL) that compensates for frequency dependent intermodulation distortion (IMD) components. The proposed method controls the amplitude and phase values of the frequency components corresponding to the transmission bandwidth of the output signal. A DPDL employing the proposed method simultaneously provides IMD component cancellation of out-of-band components and PAPR reduction at the output signal. This paper identifies the amplitude and phase conditions to minimize the PAPR. Experimental results based on a 2-GHz band 1-W class power amplifier show that the proposed method improves the drain efficiency of the power amplifier when degradation is allowed in the error vector magnitude. To the best knowledge of the authors, this is the first PAPR reduction method for DPDL that reduces the PAPR while simultaneously compensating for IMD components.

  • A Low-Power Pulse-Shaped Duobinary ASK Modulator for IEEE 802.11ad Compliant 60GHz Transmitter in 65nm CMOS

    Bangan LIU  Yun WANG  Jian PANG  Haosheng ZHANG  Dongsheng YANG  Aravind Tharayil NARAYANAN  Dae Young LEE  Sung Tae CHOI  Rui WU  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER-Electronic Circuits

      Page(s):
    126-134

    An energy efficient modulator for an ultra-low-power (ULP) 60-GHz IEEE transmitter is presented in this paper. The modulator consists of a differential duobinary coder and a semi-digital finite-impulse-response (FIR) pulse-shaping filter. By virtue of differential duobinary coding and pulse shaping, the transceiver successfully solves the adjacent-channel-power-ratio (ACPR) issue of conventional on-off-keying (OOK) transceivers. The proposed differential duobinary code adopts an over-sampling precoder, which relaxes timing requirement and reduces power consumption. The semi-digital FIR eliminates the power hungry digital multipliers and accumulators, and improves the power efficiency through optimization of filter parameters. Fabricated in a 65nm CMOS process, this modulator occupies a core area of 0.12mm2. With a throughput of 1.7Gbps/2.6Gbps, power consumption of modulator is 24.3mW/42.8mW respectively, while satisfying the IEEE 802.11ad spectrum mask.

  • Statistical Model Using Geometrical-Optical Space Classification: Expansion of Applicable Frequencies to the 5 GHz Band

    Takahiro HASHIMOTO  Takayuki NAKANISHI  Yoshio INASAWA  Yasuhiro NISHIOKA  Hiroaki MIYASHITA  

     
    BRIEF PAPER-Electromagnetic Theory

      Page(s):
    135-138

    The method for estimating propagation loss that classifies receiving points into multiple groups by focusing on the number of reflections and diffractions, and applies a separate statistical model to each group was extended from only 2.4 GHz band to both 2.4 GHz and 5 GHz band. The extended statistical model was created from received power measurements. First, an appropriate grouping method was investigated based on the fitting error of statistical model. Non-line-of-sight (NLOS) receiving points were grouped in order of points that a wave reflected one time reaches, points that a wave reflected two times reaches, and points that a wave diffracted one time reaches. Next, the effectiveness of the proposed method was verified by comparison with conventional statistical models (one-slope, dual-slope, multi-wall, partitioned) on three office floors that differ from the environment used to create the statistical model. The average NLOS estimation error for the three evaluation environments was 4.9 dB, demonstrating that the proposed method has accuracy equal to or better than that of conventional methods.

  • A Novel Failure Detection Circuit for SUMPLE Using Variability Index

    Leiou WANG  Donghui WANG  Chengpeng HAO  

     
    BRIEF PAPER-Electronic Circuits

      Page(s):
    139-142

    SUMPLE, one of important signal combining approaches, its combining loss increases when a sensor in an array fails. A novel failure detection circuit for SUMPLE is proposed by using variability index. This circuit can effectively judge whether a sensor fails or not. Simulation results validate its effectiveness with respect to the existing algorithms.