The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] voltage(594hit)

561-580hit(594hit)

  • Overview of Low-Power ULSI Circuit Techniques

    Tadahiro KURODA  Takayasu SAKURAI  

     
    INVITED PAPER

      Vol:
    E78-C No:4
      Page(s):
    334-344

    This paper surveys low-power circuit techniques for CMOS ULSIs. For many years a power supply voltage of 5 V was employed. During this period power dissipation of CMOS ICs as a whole increased four-fold every three years. It is predicted that by the year 2000 the power dissipation of high-end ICs will exceed the practical limits of ceramic packages, even if the supply voltage can be feasibly reduced. CMOS ULSIs now face a power dissipation crisis. A new philosophy of circuit design is required. The power dissipation can be minimized by reducing: 1) supply voltage, 2) load capacitance, or 3) switching activity. Reducing the supply voltage brings a quadratic improvement in power dissipation. This simple solution, however, comes at a cost in processing speed. We investigate the proposed methods of compensating for the increased delay at low voltage. Reducing the load capacitance is the principal area of interest because it contributes to the improvement of both power dissipation and circuit speed. Pass-transistor logic is attracting attention as it requires fewer transistors and exhibits less stray capacitance than conventional CMOS static cicuits. Variations in its circuit topology as well as a logic synthesis method are presented and studied. A great deal of research effort has been directed towards studying every portion of LSI circuits. The research achievements are categorized in this paper by parameters associated with the source of CMOS power dissipation and power use in a chip.

  • A Monolithic GaAs Linear Power Amplifier Operating with a Single Low 2.7-V Supply for 1.9-GHz Digital Mobile Communication Applications

    Masami NAGAOKA  Tomotoshi INOUE  Katsue KAWAKYU  Shuichi OBAYASHI  Hiroyuki KAYANO  Eiji TAKAGI  Yoshikazu TANABE  Misao YOSHIMURA  Kenji ISHIDA  Yoshiaki KITAURA  Naotaka UCHITOMI  

     
    PAPER-Analog Circuits

      Vol:
    E78-C No:4
      Page(s):
    424-429

    A monolithic linear power amplifier IC operating with a single low 2.7-V supply has been developed for 1.9-GHz digital mobile communication systems, such as the Japanese personal handy phone system (PHS). Refractory WNx/W self-aligned gate GaAs power MESFETs have been successfully developed for L-band power amplification, and this power amplifier operates with high efficiency and low distortion at a low voltage of 2.7 V, without any additional negative voltage supply, by virtue of small drain knee voltage, high transconductance and sufficient breakdown voltage of the power MESFET. An output power of 23.0 dBm and a high power-added efficiency of 30.8% were attained for 1.9-GHz π/4-shifted QPSK (quadrature phase shift keying) modulated input when adjacent channel leakage power level was less than -60 dBc at 600 kHz apart from 1.9 GHz.

  • Low-Voltage Analog Circuit Design Techniques: A Review

    Kazuo KATO  

     
    PAPER-Analog Circuits

      Vol:
    E78-C No:4
      Page(s):
    414-423

    The state of the art of low-voltage (LV) analog circuit design techniques is reviewed, and fundamental design techniques are identified and classified as follows: 1) current-mode, 2) series-to-parallel, 3) signal range sharing, 4) dynamic bias, 5) linear bias, and 6) LV regulator. A relatively wide variety of low frequency application circuits have been developed, but future development is expected for wide-bandwidth application circuits such as a voltage-controlled-oscillator (VCO), a balanced multiplier, etc. The circuit techniques such as current-mode, signal range sharing, and dynamic bias will probably be most important for advanced future circuit designs.

  • High-Speed and Low-Power n+-p+ Double-Gate SOI CMOS

    Kunihiro SUZUKI  Tetsu TANAKA  Yoshiharu TOSAKA  Hiroshi HORIE  Toshihiro SUGII  

     
    PAPER-Device Technology

      Vol:
    E78-C No:4
      Page(s):
    360-367

    We propose and fabricate n+-p+ double-gate SOI MOSFETs for which threshold voltage is controlled by interaction between the two gates. Devices have excellent short channel immunity, dispite a low channel doping concentration of 1015 cm-3, and enable us to design a threshold voltage below 0.3 V while maintaining an almost ideal subthreshold swing. We demonstrated 27 ps CMOS inverter delay with a gate length of 0.19 µm, which is, to our knowledge, the lowest delay for this gate length despite rather a thick 9 nm gate oxide. This high performance is a result of the low threshold voltage and negligible drain capacitance. We also showed theoretically that we can design a 0.1 µm gate length device with an ideal subthreshold swing, and that we can expect less than 10 ps inverter delay at a supply voltage of 1 V.

  • 1V Supply Voltage Bi-CMOS Current Mode Circuits and Their Application to ADC

    Yoichi ISHIZUKA  Mamoru SASAKI  

     
    PAPER-Analog Circuits and Signal Processing

      Vol:
    E78-A No:3
      Page(s):
    395-402

    This paper presents 1V supply voltage Bi-CMOS current mode circuits. The circuits are consist of current mirrors, current comparators and current sources. The circuits have some advantages such as high accuracy, high speed, high density and low power supply. As an application of the circuits, an analog-to-digital converter (ADC) is given. The ADC operates with small chip area and low power dissipation. The performances of the proposed circuits were confirmed by using SPICE2 simulation.

  • A New Concept of Differential-Difference Amplifier and Its Application Examples for Mixed Analog/Digital VLSI Systems

    Zdzislaw CZARNUL  Tetsuya IIDA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E78-A No:3
      Page(s):
    314-321

    This paper discusses a CMOS differential-difference amplifier circuit suitable for low voltage operation. A new multiple weighted input transconductor circuit structure is suggested to be use in DDA implementation. The proposed DDA can be employed in several analog/digital systems to improve their parameters. Selected examples of the proposed transconductor/DDA applications are also discussed.

  • A Voltage Controlled Astable Multivibrator with Miller-Integrator

    Hirofumi SASAKI  Kuniaki FUJIMOTO  Mitsutoshi YAHARA  

     
    LETTER

      Vol:
    E78-A No:2
      Page(s):
    196-198

    In this letter, we propose a simple voltage controlled oscillator (VCO) with circuitry combining a Miller integrator and an RS flip-flop circuit. With the VCO, the control voltage can be varied over a broad range, and the oscillation frequency varies in proportion to the control voltage. The maximum voltage is up to 1000 times the minimum, and the calculated design values and measured values agree well. This VCO can be applied to FM modulators, FSK modulators, and other systems.

  • Highly Sensitive Real Time Electro-Optic Probing for Long Logic Pattern Analysis

    Hironori TAKAHASHI  Shin-ichiro AOSHIMA  Kazuhiko WAKAMORI  Isuke HIRANO  Yutaka TSUCHIYA  

     
    PAPER

      Vol:
    E78-C No:1
      Page(s):
    67-72

    While Electro-Optic (E-O) sampling has achived the electric signal measurement with advantages of noninvasive, noncontact and ultrafast time resolution, it is unsuitable for measuring long logic patterns in fast ICs under the functional test conditions. To overcome this problem, a real time E-O probing using a continuous wave (CW) diode laser and a fast photodetector has been developed. By adopting a ZnTe E-O probe having a half-wave voltage of 3.6 kV, shot noise limited measurement with a frequency bandwidth of 480 MHz has been achieved using a low noise diode laser (wavelength of 780 nm, output power of 30 mW), a pin photodiode, a wideband low noise amplifier, and a digital oscilloscope having 500 MHz bandwidth as a waveform analyzer. The minimum detectable voltage was 23 mV under 700 times integration. In this paper, discussion of the voltage sensitivity of real time E-O probing is included. Key parameters for attaining the highly sensitive real time E-O probing are the sensitivity of the E-O probe and noises of the probing light and detection system.

  • Evolution of Mixed-Signal Communications LSIs

    Masayuki ISHIKAWA  Tsuneo TSUKAHARA  Yukio AKAZAWA  

     
    INVITED PAPER-Analog LSIs

      Vol:
    E77-C No:12
      Page(s):
    1895-1902

    Mixed-signal LSIs promise to permit increased levels of integration, not only in voiceband but also in multi-GHz-band applications such as wireless communications and optical data links. This paper reviews the evolution of mixed-signal communications LSIs and discusses some of their design problems, including device noise and crosstalk noise. In the low-power and low-voltage designs emerging as new disciplines, the target supply voltage for voiceband LSIs is around 1 V, and even GHz-band circuits are approaching 2 V. MOS devices are expected to play an important role even in the frequency range over 100 MHz, in the area of wireless or optical communications circuits.

  • Design of a 3.2 GHz 50 mW 0.5 µm GaAs PLL-Based Clock Generator with 1 V Power Supply

    Tadayoshi ENOMOTO  Toshiyuki OKUYAMA  

     
    PAPER-Processor Interfaces

      Vol:
    E77-C No:12
      Page(s):
    1957-1965

    A 3.2 GHz, 50 mW, 1 V, GaAs clock pulse generator (CG) based on a phase-locked loop (PLL) circuit has been designed for use as an on-chip clock generator in future high speed processor LSIs. 0.5 µm GaAs MESFET and DCFL circuit technologies have been used for the CG, which consists of 224 MESFETs. An "enhanced charge-up current" inverter has been specially designed for a low power and high speed voltage controlled oscillator (VCO). In this new inverter, a voltage controlled dMESFET is combined in parallel with the load dMESFET of a conventional DCFL inverter. This voltage controlled dMESFET produces an additional charge-up current resulting in the new VCO obtaining a much higher oscillation frequency than that of a ring oscillator produced with a conventional inverter. With a single 1 V power supply (Vdd), SPICE calculation results showed that the VCO tuning range was 2.25 GHz to 3.65 GHz and that the average VCO gain was approximately 1.4 GHz/V in the range of a control voltage (Vc) from 0 to 1 V. Simulation also indicated that at a Vdd of 1 V the CG locked on a 50 MHz external clock and generated a 3.2 GHz internal clock (=50 MHz64). The jitter and power dissipation of the CG at 3.2 GHz oscillation and a Vdd of 1 V were less than 8.75 psec and 50 mW, respectively. The typical lock range was 2.90 GHz to 3.59 GHz which corresponded to a pull-in range of 45.3 MHz to 56.2 MHz.

  • A 3 Volt 1 Mbit Full-Featured EEPROM Using a Highly-Reliable MONOS Device Technology

    Shin-ichi MINAMI  Kazuaki UJIIE  Masaaki TERASAWA  Kazuhiro KOMORI  Kazunori FURUSAWA  Yoshiaki KAMIGAKI  

     
    PAPER-Non-volatile Memory

      Vol:
    E77-C No:8
      Page(s):
    1260-1269

    A low-voltage operation and highly-reliable nonvoltatile semiconductor memory with a large capacity has been manufactured using 0.8-µm CMOS technology. This 3-volt, 1-Mbit, full-featured MONOS EEPROM has a chip size of 51.3 mm2 and a memory cell size of 23.1µm2. An asymmetric programming voltage method fully exploits the abilities of the MONOS device and provides 10-year data retention after 106 erase/write cycles. Because of its wide-margin circuit design, this EEPROM can also be operated at 5 volts. High-speed read out is provided by using the polycide word line and the differential sense amplifier with a MONOS dummy memory. New functions such as data protection with software and programming-end indication with a toggle bit are added, and chips are TSOP packaged for use in many kinds of portable equipment.

  • Low-Voltage and Low-Power ULSI Circuit Techniques

    Masakazu AOKI  Kiyoo ITOH  

     
    INVITED PAPER-General Technology

      Vol:
    E77-C No:8
      Page(s):
    1351-1360

    Recent achievements in low-voltage and low-power circuit techniques are reported in this paper. DC current in low-voltage CMOS circuits stemming from the subthreshold current in MOS transistors, is effectively reduced by applying switched-power-line schemes. The AC current charging the capacitance in DRAM memory arrays is reduced by a partial activation of array blocks during the active mode and by a charge recycle during the refresh mode. A very-low-power reference-voltage generator is also reported to control the internal chip voltage precisely. These techniques will open the way to using giga-scale LSIs in battery-operated portable equipment.

  • A Restatement on Applications of Electrical Considerations for One-Dimentional Wave Phenomena

    Nobuo NAGAI  

     
    PAPER

      Vol:
    E77-A No:5
      Page(s):
    804-809

    Wave digital filters are a class of digital filters. They are equivalent to commensurate transmission line circuits synthesized with uniform, lossless, and commensurated transmission lines. In order to extend their applications to physical wave phenomena including quantum electronics, it is necessary to consider a generalized distributed line whose velocity of energy flow has frequency characteristics. This paper discusses a generalized distributed circuit, and we obtain two types of lines, lossless and cut-off. In order to analyze these lines, we discuss signal flow graphs of steady state voltage and current. The reflection factors we obtain here are the same as that for an active power or a diagonal element of a scattering matrix, which is zero in conjugate matching. By using this reflection factor, we obtain band-pass filters synthesized with the cut-off lines. We also describe an analysis method for nonuniform line related to Riccati differential equation.

  • A Proposal of New Multiple-Valued Mask-ROM Design

    Yasushi KUBOTA  Shinji TOYOYAMA  Yoji KANIE  Shuhei TSUCHIMOTO  

     
    PAPER-Integrated Electronics

      Vol:
    E77-C No:4
      Page(s):
    601-607

    A new multiple-valued mask-ROM cell and a technique suitable for data detection are proposed. The information is programmed in each of the memory cells as both the threshold voltage and the channel length of the memory cell transistor, and the stored data are detected by selecting the bias condition of both the word-line and the data-line. The datum stored in the channel length is read-out using punch-through effect at the high drain voltage. The feasibility of this mask-ROM's is studied with device simulation and circuit simulation. With this design, it would be possible to get the high-density mask-ROM's, which might be faster in access speed and easier in fabrication process than the conventional ones. Therefore, this design is expected to be one of the most practical multiple-valued mask-ROM's.

  • Temperature Adaptive Voltage Reference Network for Realizing a Transconductance with Low Temperature Sensitivity

    Rabin RAUT  

     
    LETTER-Integrated Electronics

      Vol:
    E77-C No:3
      Page(s):
    515-518

    A technique to realize a transconductance which is relatively insensitive over temperature variations is reported. Simulation results with MOS and bipolar transistors indicate substantial improvement in temperature insensitivity over a range exceeding 100 degrees Celsius. It should find useful applications in analog LSI/VLSI systems operating over a wide range of temperature.

  • Estimation of Yield Suppression for 1.5 V-1 Gbit DRAMs Caused by Threshold Voltage Variation of MOSFET due to Microscopic Fluctuation in Dopant Distributions

    Shigeyoshi WATANABE  Takaaki MINAMI  

     
    PAPER-Integrated Electronics

      Vol:
    E77-C No:2
      Page(s):
    273-279

    This paper newly estimates the yield suppression for 1.5 V-1 Gbit DRAM caused by threshold voltage variation of MOSFET due to microscopic fluctuations in dopant distributions within the channel region and points out the limitation of the conventional redundancy techniques. The yield suppression is estimated for four main circuit blocks, the memory cell transfer transistor, bit line sense amplifier S/A, I/O line differential amplifier D/A, and the peripheral circuit. It is newly found that for 1.5 V-1 Gbit DRAM due to the effect of the newly estimated threshold voltage variation of MOSFET the bit failures of memory cells become the most dominant failure mode and the failure of D/A which can be ignored for 64 Mbit DRAM level can no longer be neglected. Furthermore, the novel optimized redundancy technique for replacing these failure is described.

  • Low Temperature Coefficient CMOS Voltage Reference Circuits

    Katsuji KIMURA  

     
    LETTER

      Vol:
    E77-A No:2
      Page(s):
    398-402

    Novel circuit design techniques for CMOSFET (complementary MOS field-effet transistor)-only bias circuits, which each include a current mirror with a peaking characteristic, a current reference with a positive temperature coefficient, and a voltage reference with an optional temperature dependence, are described. An MOS Nagata current mirror is analyzed, and bias circuits like a CMOS self-biasing Nagata current reference and a CMOS self-biasing Nagata voltage reference, both of which include an MOS Nagata current mirror, are discussed. In addition, a CMOS temperature coefficient shifter, used to add an offset voltage and an optional temperature coefficient to a reference voltage, is also discussed. The CMOS Nagata voltage reference was verified with a breadboard using discrete componente and a 0.15 mV/ temperature dependence.

  • Hierarchical Analysis System for VLSI Power Supply Network

    Takeshi YOSHITOME  

     
    PAPER

      Vol:
    E76-A No:10
      Page(s):
    1659-1665

    Since, in a VLSI circuit, the number of transistors and the clock frequency are constantly increasing, it is important to analyze the voltage drop and current density on a full chip's power networks. We propose a new hierarchical power analysis system named XPOWER. A new reduction algorithm for the resistance and current source network is used in this system. The algorithm utilizes the design hierarchy in nature and is independent of network topology. Networks at each level are reduced into small and equivalent networks, and this reduction is performed recursively from the bottom levels of the design hierarchy. At each step of the reduction, the network under consideration consists of two kinds of objects: (1) reduced child networks, and (2) the interconnection between child networks. After all networks have been reduced, circuit equationa are solved recursively from the top. This allows to decrease the size of the matrix to be solved and to reduce the execution time. Experimental results show that the factor of reduction in matrix size is from 1/10 to 1/40 and execution is six times faster than with flat analysis. The power networks of a 16 bit digital signal processor was analyzed within 15 minutes using XPOWER.

  • A Unified Analysis of Four-Quadrant Analog Multipliers Consisting of Emitter and Source-Coupled Transistors Operable on Low Supply Voltage

    Katsuji KIMURA  

     
    PAPER

      Vol:
    E76-C No:5
      Page(s):
    714-737

    Novel circuit design techniques for bipolar and MOS four-quadrant analog multipliers operable on low supply voltage are described. There are three design techniques for multipliers operable on low supply voltage. One is the transistor-size unbalance technique. Another is the bias offset technique. A third is the multitail technique. Bipolar and MOS four-quadrant analog multipliers proposed in this paper consist of transistor-pairs with different transistor sizes (i.e. emitter areas or gate W/L values are different), transistor-pairs with the same bias offset or multitail cells (i.e. quadritail cells and an octotail cell). Several kinds of squaring circuits consisting of such transistor-pairs are applied to the multipliers when the multiplication method is based on the quarter-square technique. These multipliers all have satisfiable multiplication characteristics with four-quadrant operations in analog signal processing, whether implemented in bipolar technology or implemented in MOS technology.

  • BiCMOS Circuit Techniques for 3.3 V Microprocessors

    Fumio MURABAYASHI  Tatsumi YAMAUCHI  Masahiro IWAMURA  Takashi HOTTA  Tetsuo NAKANO  Yutaka KOBAYASHI  

     
    PAPER

      Vol:
    E76-C No:5
      Page(s):
    695-700

    With increases in frequency and density of RISC microprocessors due to rapid advances in architecture, circuit and fine device technologies, power consumption becomes a bigger concern. Supply voltage should be reduced from 5 V to 3.3 V. In this paper, several novel circuits using 0.5µm BiCMOS technology are proposed. These can be applied to a superscalar RISC microprocessor at 3.3 V power supply or below. High speed and low power consumption characteristics are achieved in a floating-point data path, an integer data path and a TLB by using the proposed circuits. The three concepts behind the proposed high speed circuit techniques at low voltage are summarized as follows. There are a number of heavy load paths in a microprocessor, and these become critical paths under low voltage conditions. To achieve high speed characteristics under heavy load conditions without increasing circuit area, low voltage swing operation of a circuit is effective. By exploiting the high conductance of a bipolar transistor, instead of using an MOS transistor, low swing operation can be got. This first concept is applied to a single-ended common-base sense circuit with low swing data lines in the register file of a floating and an integer data path. Both multi-series transistor connections and voltage drops by Vth of MOS transistors and Vbe of bipolar transistors also degrade the speed performance of a circuit. Then the second concept employed is a wired-OR logic circuit technique using bipolar transistors which is applied to a comparator in the TLB instead of multi-series transistor connections of CMOS circuits. The third concept to overcome the voltage drops by Vth and Vbe is addition of a pull up PMOS to both the path logic adder and the BiNMOS logic gate to ensure the circuits have full swing operation.

561-580hit(594hit)