The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] voltage(597hit)

321-340hit(597hit)

  • A Study of Sense-Voltage Margins in Low-Voltage-Operating Embedded DRAM Macros

    Akira YAMAZAKI  Fukashi MORISHITA  Naoya WATANABE  Teruhiko AMANO  Masaru HARAGUCHI  Hideyuki NODA  Atsushi HACHISUKA  Katsumi DOSAKA  Kazutami ARIMOTO  Setsuo WAKE  Hideyuki OZAKI  Tsutomu YOSHIHARA  

     
    PAPER-Integrated Electronics

      Vol:
    E88-C No:10
      Page(s):
    2020-2027

    The voltage margin of an embedded DRAM's sense operation has been shrinking with the scaling of process technology. A method to estimate this margin would be a key to optimizing the memory array configuration and the size of the sense transistor. In this paper, the voltage margin of the sense operation is theoretically analyzed. The accuracy of the proposed voltage margin model was confirmed on a 0.13-µm eDRAM test chip, and the results of calculation were generally in agreement with the measured results.

  • Low-Voltage, Low-Distortion and Rail-to-Rail CMOS Sample and Hold Circuit

    Koichi TANNO  Kiminobu SATO  Hisashi TANAKA  Okihiko ISHIZUKA  

     
    LETTER

      Vol:
    E88-A No:10
      Page(s):
    2696-2698

    In this letter, we propose a sample and hold circuit (S/H circuit) with the clock boost technique and the input signal tracking technique. The proposed circuit block generates the clock with the amplitude of VDD + vin, and the clock is used to control the MOS switch. By applying this circuit to a S/H circuit, we can deal with the rail-to-rail signal with maintaining low distortion. Furthermore, the hold error caused by the charge injection and the clock feedthrough can be also reduced by using the dummy switch. The Star-HSPICE simulation results are reported in this letter.

  • Simulation on Arc Movement under Effects of Quenching Chamber Configuration and Magnetic Field for Low-Voltage Circuit Breaker

    Mingzhe RONG  Yi WU  Qian YANG  Guangxia HU  Shengli JIA  Jianhua WANG  

     
    PAPER-Arc Discharge & Related Phenomena

      Vol:
    E88-C No:8
      Page(s):
    1577-1583

    This paper is devoted to simulate the arc movement in the quenching chamber of the low-voltage circuit breaker. Based on a group of governing equations, a three-dimensional (3-D) arc model is built and solved by a modified commercial code. According to the simulated results, some phenomena such as a 'bulge' in front of the arc column, a tail in the rear of the arc column, arc shrinkage near the electrodes and arc movement characteristics versus different chamber configuration and external magnetic field are found, and the mechanism of the above phenomena is described in detail. Finally, in order to verify the simulation results, arc movement is investigated by hi-spec motion analyzer experimentally.

  • Suppression of the Input Current Harmonics and Output Voltage Ripple Using the Novel Multiple-Input AC-DC Converter

    Kimiyoshi KOBAYASHI  Hirofumi MATSUO  Fujio KUROKAWA  Yoichi ISHIZUKA  

     
    PAPER-Electronic Circuits

      Vol:
    E88-C No:8
      Page(s):
    1785-1789

    This paper presents the novel method not only to suppress the input current harmonics but also to realize the low frequency output voltage ripple using the multiple-input ac-dc converter, which is considered from viewpoints of the relatively small power application and simple circuit configuration. The operation principle and control strategy of the proposed circuit are discussed. As a result, it is clarified that the new circuit has excellent performance characteristics such as high power factor over 0.99, low total harmonic current distortion factor less than 9.2% and low output voltage ripple of 40 mV.

  • Fundamental Characteristics of Stationary Lithium-Ion Secondary Cells and a Cell-Voltage-Equalizing Circuit

    Toshio MATSUSHIMA  Shinya TAKAGI  Seiichi MUROYAMA  Toshio HORIE  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E88-B No:8
      Page(s):
    3436-3442

    This paper describes the characteristics of lithium-ion cells developed for stationary use, as in the case of stand-by sources in power systems. The effect of a cell-voltage-equalizing circuit developed for batteries of cells is also demonstrated. The tested lithium-ion cells were suitable to be charged by the constant-current, constant-voltage (CCCV) method and could be charged efficiently over a wide range of temperatures. They also showed good discharge performance with little dependence on the discharge current and temperature. Total capacity reduction of over 60% can be expected in batteries of lithium-ion cells. The cell-voltage-equalizing circuit was shown to be useful and necessary for batteries of lithium-ion cells in order to suppress deviations in the cell voltage and capacity loss.

  • A 900 mV 66 µW Sigma-Delta Modulator Dedicated to Implantable Sensors

    Zhijun LU  Yamu HU  Mohamad SAWAN  

     
    PAPER-Biomedical Circuits and Systems

      Vol:
    E88-D No:7
      Page(s):
    1610-1617

    In this paper, a low-voltage low-power sigma-delta modulator dedicated to implantable sensing devices is presented. This second-order single-loop sigma-delta modulator is implemented with half-delay integrators. These integrators are based on new fully-differential CMOS class AB switched-Operational Transconductance Amplifier (switched-OTA). An on-chip voltage doubler is introduced to locally boost a supply voltage at the input stage of a conventional OTA in order to allow rail-to-rail signal swing. Experimental results of the modulator fabricated in CMOS 0.18 µm technology confirm its expected features of a peak signal-to-noise ratio (SNR) of 72 dB, a signal-to-noise distortion ratio (SNDR) of 62 dB in a 5 kHz signal bandwidth, and a power consumption lower than 66 µW with a 900 mV voltage supply.

  • Clock-Free MTCMOS Flip-Flops with High Speed and Low Power

    Bong Hyun LEE  Young Hwan KIM  Kwang-Ok JEONG  

     
    PAPER

      Vol:
    E88-A No:6
      Page(s):
    1416-1424

    This paper proposes two high-performance multi-threshold-voltage CMOS (MTCMOS) F/Fs that are based on the CMOS hybrid-latch F/F and the CMOS semi-dynamic F/F. The proposed F/Fs utilize a clock-gating technique or a data recovery circuit in order to preserve their logic states in the power-down mode. They can change operation modes whether the clock level is high or low, and they provide outputs to fanouts in the power-down mode. When compared with existing clock-free MTCMOS F/Fs, the proposed MTCMOS hybrid-latch F/F shows maximum reduction of average delay, average power, and average power-delay product by 33%, 46%, and 63% for the supply voltage ranging from 0.8 V to 1.2 V. Although outperformed by the MTCMOS hybrid-latch F/F, the proposed MTCMOS semi-dynamic F/F inherits the benefit of the embedded logic from the CMOS SD F/F. Experimental results indicate that the MTCMOS semi-dynamic F/F can be used to implement a logic circuit that is superior to the one designed using the MTCMOS hybrid-latch F/F in speed, power, and area.

  • Efficient Mismatch-Insensitive Track-and-Hold Circuit Using Low-Voltage Floating-Gate MOS Transistors

    Apisak WORAPISHET  Kornika MOOLPHO  Jitkasame NGARMNIL  

     
    PAPER-Building Block

      Vol:
    E88-C No:6
      Page(s):
    1148-1153

    A structure of a track-and-hold (T/H) circuit based on a pair of complementary floating-gate (FG) MOS transistors is introduced. Its main features include low complexity, low operating supply voltage and gain insensitivity to device mismatches, leading to efficient realization of numerous baseband functions in modern communication systems. The detailed operation and performance analysis of the FG T/H circuit are given. Functional verification of the circuit is provided through a breadboard experiment. The effectiveness of the circuit is verified via simulations where the single T/H cell operating at 10 MHz clock frequency exhibits gain variation less than 0.13% and a dynamic range over 71 dB with the coupling capacitance of 300 fF at 1.5 V supply and 12.75 µW power consumption. As a demonstration on its practical viability, the designed FG T/H cell was also utilized to realize a 10 MS/s 7-tap analog correlator for possible use in modern communication applications.

  • 64-Bit High-Performance Power-Aware Conditional Carry Adder Design

    Kuo-Hsing CHENG  Shun-Wen CHENG  

     
    PAPER-Integrated Electronics

      Vol:
    E88-C No:6
      Page(s):
    1322-1331

    The conditional sum adder (CSA) has been shown to outperform other adders applied in high-speed applications. This investigation proposes a modified CSA called the conditional carry adder (CCA). Based on the proposed adder architecture, six 64-bit hybrid dual-threshold CCAs for power-aware applications were discussed. Architectural modification of the CCA raises the operation speed, decreases the power dissipation, and lowers the hardware overhead. The proposed 64-bit CCA can decrease the number of multiplexers and internal nodes in the adder design by around 27% compared to the 64-bit CSA. Furthermore, components on critical paths use a low threshold voltage to accelerate the speed of operation, and other components use the normal threshold voltage to save power. This feature is very useful in implementing power-aware arithmetic systems. One of the proposed circuits has the lowest power-delay product and energy-delay product. The hybrid circuit represents a fine compromise between power and performance. Its power efficiency is better than that of the single threshold voltage circuit designs.

  • A Temperature and Supply Voltage Independent CMOS Voltage Reference Circuit

    Toshihiro MATSUDA  Ryuichi MINAMI  Akira KANAMORI  Hideyuki IWATA  Takashi OHZONE  Shinya YAMAMOTO  Takashi IHARA  Shigeki NAKAJIMA  

     
    PAPER-Integrated Electronics

      Vol:
    E88-C No:5
      Page(s):
    1087-1093

    A pure CMOS threshold-voltage reference (VTR) circuit achieves temperature (T) coefficient of 5 µV/(T = -60+100) and supply voltage (VDD) sensitivity of 0.1 mV/V (VDD = 35 V). A combination of subthreshold current, linear current and saturation current in n-MOSFETs provides a small voltage and temperature dependence. Three different regions in I-V characteristics of MOSFETs generate a constant VTR based on threshold voltage at 0 K. A feedback scheme from the reference output to gates of n-MOSFETs extremely stabilizes the output. The circuit consists of only 17 MOSFETs and its simple scheme saves the die area, which is 0.18 mm2 in the TEG (Test Element Group) chip fabricated by 1.2 µm n-well CMOS process.

  • Sub-µW Switched-Capacitor Circuits Using a Class-C Inverter

    Minho KWON  Youngcheol CHAE  Gunhee HAN  

     
    PAPER-Analog Signal Processing

      Vol:
    E88-A No:5
      Page(s):
    1313-1319

    In a switched-capacitor (SC) circuit, the major block is an operational transconductance amplifier (OTA) designed in order to form a feedback loop. However, the OTA is the block that consumes most of the power in SC circuits. This paper proposes the use of a class-C inverter instead of the OTA in SC circuits and a corresponding switches configuration for extremely low power applications. A detailed analysis and design trade-offs are also provided. Simulation and experimental results show that sufficient performance can be obtained even though a class-C inverter is used. The second-order biquad filter and the second-order SC sigma-delta (ΣΔ) modulator based on a class-C inverter are designed. These circuits have been fabricated with a 0.35-µm CMOS process. The measurement results of the fabricated SC biquad filter show a 59-dB signal-to-noise-plus-distortion ratio (SNDR) for a 0.2-Vp-p input signal and 0.9-V dynamic ranges. The power consumption of the biquad filter is only 0.4 µW with a 1-V power supply. The measurement results of the fabricated ΣΔ modulator show a 61-dB peak SNR for a 1.6-kHz bandwidth with a sample rate of 200 kHz. The modulator consumes 0.8 µW with a 1-V power supply.

  • The Umbrella Cell: A High-Density 2T Cell for SOC Applications

    Satoru AKIYAMA  Takao WATANABE  Nobuhiro OODAIRA  Tsuyoshi ISHIKAWA  Digh HISAMOTO  

     
    PAPER-Memory

      Vol:
    E88-C No:4
      Page(s):
    614-621

    To realize a high-density on-chip memory, the authors have proposed a novel logic-process-compatible memory cell. This cell consists of two logic transistors, and placing a planar MIM (metal insulator metal) capacitor on a copper wire above the transistors produces a memory area of 26 F2, which is approximately 60% smaller than a 6T SRAM cell. A suitable cell-bias design and a dual precharge scheme solve the coupling problem inherent in the cell and allow standard logic transistors to be used. This cell--applying the proposed schemes--can handle 10-ns cycle time at a bit-line voltage of 0.7 V. The random cycle is about three times faster than that of a conventional VBL precharge scheme. These results indicate that the umbrella cell is a strong candidate for providing a high-density memory for SOC applications.

  • Dynamic Voltage and Frequency Management for a Low-Power Embedded Microprocessor

    Takahiro SEKI  Satoshi AKUI  Katsunori SENO  Masakatsu NAKAI  Tetsumasa MEGURO  Tetsuo KONDO  Akihiko HASHIGUCHI  Hirokazu KAWAHARA  Kazuo KUMANO  Masayuki SHIMURA  

     
    PAPER-Digital

      Vol:
    E88-C No:4
      Page(s):
    520-527

    In this paper, a Dynamic Voltage and Frequency Management (DVFM) scheme introduced in a microprocessor for handheld devices with wideband embedded DRAM is reported. Our DVFM scheme reduces the power consumption effectively by cooperation of the autonomous clock frequency control and the adaptive supply voltage control. The clock frequency is controlled using hardware activity information to determine the minimum value required by the current processor load. This clock frequency control is realized without special power management software. The supply voltage is controlled according to the delay information provided from a delay synthesizer circuit, which consists of three programmable delay components, gate delay, RC delay and a rise/fall delay. The delay synthesizer circuit emulates the critical-path delay within 4% voltage accuracy over the full range of process deviation and voltage. This accurate tracking ability realizes the supply voltage scaling according to the fluctuation of the LSI's characteristic caused by the temperature and process deviation. The DVFM contributes not only the dynamic power reduction, but also the leakage power reduction. This microprocessor, fabricated in 0.18 µm CMOS embedded DRAM technology achieves 82% power reduction in a Personal Information Management scheduler (PIM) application and 40% power reduction in a MPEG4 movie playback application. As process technology shrinks, the DVFM scheme with leakage power compensation effect will become more important realizing in high-performance and low-power mobile consumer applications.

  • A Sub-0.5 V Differential ED-CMOS/SOI Circuit with Over-1-GHz Operation

    Takakuni DOUSEKI  Toshishige SHIMAMURA  Nobutaro SHIBATA  

     
    PAPER-Digital

      Vol:
    E88-C No:4
      Page(s):
    582-588

    This paper describes a speed-oriented ultralow-voltage and low-power SOI circuit technique based on a differential enhancement- and depletion-mode (ED)-MOS circuit. Combining an ED-MOS circuit block for critical paths and a multi-Vth CMOS circuit block for noncritical paths, that is, the so-called differential ED-CMOS/SOI circuit, makes it possible to achieve low-power and ultrahigh-speed operation of over 1 GHz at a supply voltage of less than 0.5 V. As two applications of the differential ED-CMOS/SOI circuit, a multi-stage frequency divider that uses the ED-MOS circuit in a first-stage frequency divider and a pipelined adder with a CMOS pipeline register are described in detail. To verify the effectiveness of the ED-CMOS/SOI circuit scheme, we fabricated a 1/8 frequency divider and a 32-bit binary look-ahead carry (BLC) adder using the 0.25-µm MTCMOS/SOI process. The frequency divider operates down to 0.3 V with a maximum operating frequency of 3.6 GHz while suppressing power dissipation to 0.3 mW. The 32-bit adder operates at a frequency of 1 GHz at 0.5 V.

  • Composite-Collector InGaP/GaAs HBTs for Linear Power Amplifiers

    Takaki NIWA  Takashi ISHIGAKI  Naoto KUROSAWA  Hidenori SHIMAWAKI  Shinichi TANAKA  

     
    PAPER-Compound Semiconductor Devices

      Vol:
    E88-C No:4
      Page(s):
    672-677

    The linear operation of a HBT with a GaAs/InGaP composite collector structure is demonstrated. The composite collector structure allows for a thin collector design that is suitable for the linear operation of a HBT without critical degradation of the breakdown voltage. The load pull measurements under a 1.95 GHz WCDMA signal have shown that a composite-collector HBT with a 400-nm thick collector layer operates with power-added-efficiency (PAE) as high as 53% at VCE = 3.5 V as a result of improved distortion characteristics. Despite the thin collector design, collector-emitter breakdown voltage of 11 V was achieved even at current density of 10 kA/cm2. The composite-collector HBT has even greater advantage for future low voltage (< 3 V) applications where maintaining PAE and linearity becomes one of the critical issues.

  • Row-by-Row Dynamic Source-Line Voltage Control (RRDSV) Scheme for Two Orders of Magnitude Leakage Current Reduction of Sub-1-V-VDD SRAM's

    Kyeong-Sik MIN  Kouichi KANDA  Hiroshi KAWAGUCHI  Kenichi INAGAKI  Fayez Robert SALIBA  Hoon-Dae CHOI  Hyun-Young CHOI  Daejeong KIM  Dong Myong KIM  Takayasu SAKURAI  

     
    PAPER-Electronic Circuits

      Vol:
    E88-C No:4
      Page(s):
    760-767

    A new Row-by-Row Dynamic Source-Line Voltage Control (RRDSV) scheme is proposed to suppress leakage current by two orders of magnitude in the SRAM's for sub-70 nm process technology with sub-1-V VDD. This two-order leakage reduction is caused from the cooperation of reverse body-to-source biasing and Drain Induced Barrier Lowering (DIBL) effects. In addition, metal shields are proposed to be inserted between the cell nodes and the bit lines not to allow the cell nodes to be flipped by the external bit-line coupling noise in this paper. A test chip has been fabricated to verify the effectiveness of the RRDSV scheme with the metal shields by using 0.18-µm CMOS process. The retention voltages of SRAM's with the metal shields are measured to be improved by as much as 40-60 mV without losing the stored data compared to the SRAM's without the shields.

  • An Energy-Efficient Clustered Superscalar Processor

    Toshinori SATO  Akihiro CHIYONOBU  

     
    PAPER-Digital

      Vol:
    E88-C No:4
      Page(s):
    544-551

    Power consumption is a major concern in embedded microprocessors design. Reducing power has also been a critical design goal for general-purpose microprocessors. Since they require high performance as well as low power, power reduction at the cost of performance cannot be accepted. There are a lot of device-level techniques that reduce power with maintaining performance. They select non-critical paths as candidates for low-power design, and performance-oriented design is used only in speed-critical paths. The same philosophy can be applied to architectural-level design. We evaluate a technique, which exploits dynamic information regarding instruction criticality in order to reduce power. We evaluate an instruction steering policy for a clustered microarchitecture, which is based on instruction criticality, and find it is substantially energy-efficient while it suffers performance degradation.

  • 0.3-1.5 V Embedded SRAM Core with Write-Replica Circuit Using Asymmetrical Memory Cell and Source-Level-Adjusted Direct-Sense-Amplifier

    Toshikazu SUZUKI  Yoshinobu YAMAGAMI  Ichiro HATANAKA  Akinori SHIBAYAMA  Hironori AKAMATSU  Hiroyuki YAMAUCHI  

     
    PAPER-Memory

      Vol:
    E88-C No:4
      Page(s):
    630-638

    This paper describes the access-timing control for an embedded SRAM core which operates in low and wide supply voltage (Vdd = 0.3-1.5 V). In the conventional SRAMs, a wiring-replica with replica-memory-cell (RMC) to trace the delay of memory core is used for this purpose. Introducing a wiring-replica control provides the better tracing capability in the wide range of Vdd above 0.5 V than those of using the control with logic-gate-delay. However, as Vdd is reduced below 0.5 V and gets close to the threshold voltage (Vth) of transistors, the access-timing fluctuation resulting from the variation in memory-cell-transistor-drain current (Id) is intolerably increased. As a result, the conventional control is no longer effective in such a low-voltage operation because the RMC can not replicate the variation in transistor-drain current (Id) and Vth of the memory-cells (MCs). Thus, to trace the access-timing fluctuation caused by the variation in Id and Vth is the prerequisite for the SRAM control in the range of Vdd = 0.3-1.5 V. To solve this issue, we have proposed new access-control scheme as follows; 1) a write-replica circuit with an asymmetrical memory cell (WRAM) making it possible to replicate the variation in Id and Vth for the write-access timing control, and 2) a source-level-adjusted direct-sense-amplifier (SLAD) to accelerate the read-access-timing even in low Vdd. These circuit techniques were implemented in a 32-Kbit SRAM in four-metal 130-nm CMOS process technology, and have been verified a low-voltage operation of 0.3 V which has not ever reported with 6.8 MHz. Moreover it operated in wide-voltage up to 1.5 V with 960 MHz. The required 27 MHz operation for mobile applications has been demonstrated at 0.4 V which is 6-times faster than the previous reports. The WRAM scheme enabled the write operation even at 0.3 V. And the access time which can be restricted by the slow tail bits of MCs has been accelerated by 73% to 140 nsec at 0.3 V by using SLAD scheme.

  • Low On-Voltage Operation AlGaN/GaN Schottky Barrier Diode with a Dual Schottky Structure

    Seikoh YOSHIDA  Nariaki IKEDA  Jiang LI  Takahiro WADA  Hironari TAKEHARA  

     
    PAPER-Power Devices

      Vol:
    E88-C No:4
      Page(s):
    690-693

    We propose a novel Schottky barrier diode with a dual Schottky structure combined with an AlGaN/GaN heterostructure. The purpose of this diode was to lower the on-state voltage and to maintain the high reverse breakdown voltage. An AlGaN/GaN heterostructure was grown using a metalorganic chemical vapor deposition (MOCVD). The Schottky barrier diode with a dual Schottky structure was fabricated on the AlGaN/GaN heterostructure. As a result, the on-voltage of the diode was below 0.1 V and the reverse breakdown voltage was over 350 V.

  • A 1-V Cyclic A/D Converter Using FD-SOI Sample/Hold Circuits for Sensor Networks

    Jun TERADA  Yasuyuki MATSUYA  Shin'ichiro MUTOH  Yuichi KADO  

     
    PAPER-Analog

      Vol:
    E88-C No:4
      Page(s):
    479-483

    A cyclic A/D conversion circuit technique for sensor networks has been developed using 0.2-µm CMOS/FD-SOI technology. The FD-SOI analog switches can lower the supply voltage without degrading accuracy because of their negligible body effect. The proposed A/D converter achieves operation at the supply voltage of 1 V or less and can handle a sampling frequency ranging from 8 Sps to 8 kSps with a new clocking technique.

321-340hit(597hit)