The search functionality is under construction.
The search functionality is under construction.

IEICE TRANSACTIONS on Electronics

  • Impact Factor

    0.63

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.3

Advance publication (published online immediately after acceptance)

Volume E97-C No.9  (Publication Date:2014/09/01)

    Special Section on Recent Development of Electro-Mechanical Devices (IS-EMD2013)
  • FOREWORD Open Access

    Ryo NAGASE  

     
    FOREWORD

      Page(s):
    842-842
  • Experimental Study on Arc Duration under Different Atmospheres

    Chen LI  Zhenbiao LI  Qian WANG  Du LIU  Makoto HASEGAWA  Lingling LI  

     
    PAPER

      Page(s):
    843-849

    To clarify the dependence of arc duration on atmosphere, experiments were conducted under conditions of air, N2, Ar, He and CO2 with the pressure of 0.1 MPa in a 14 V/28 V/42 V circuit respectively. A quantitative relationship between arc duration and gas parameters such as ionization potential, thermal conductivity was obtained from the experimental data. Besides, the inherent mechanism of influence of atmosphere on arc duration was discussed.

  • Study on Arc Characteristics of a DC Bridge-type Contact in Air and Nitrogen at Different Pressure

    Xue ZHOU  Mo CHEN  Xinglei CUI  Guofu ZHAI  

     
    PAPER

      Page(s):
    850-857

    High voltage DC contactors, for operation at voltage levels up to at least about 300 volts, find their increasing markets in applications such as electrical vehicles and aircrafts in which size and weight of cables are of extreme importance. The copper bridge-type contact, cooperated with magnetic field provided by permanent magnets and sealed in an arc chamber filled with high pressure gases, is a mainly used structure to interrupt the DC arc rapidly. Arc characteristic in different gases at different pressure varies greatly. This paper is focused on the arc characteristics of the bridge-type contact system when magnetic field is applied with nitrogen and gas at different pressure. The pressure of the gases varies from 1 atm to 2.5 atm. Arc characteristics, such as arc durations at different stages and arc motions in those gases are comparatively studied. The results are instructive for choosing the suitable arcing atmosphere in a DC bridge-type arc chamber of a contactor.

  • Experimental Study on Arc Motion and Voltage Fluctuation at Slowly Separating Contact with External DC Magnetic Field

    Yoshiki KAYANO  Kazuaki MIYANAGA  Hiroshi INOUE  

     
    BRIEF PAPER

      Page(s):
    858-862

    Since electromagnetic (EM) noise resulting from an arc discharge disturbs other electric devices, parameters on electromagnetic compatibility, as well as lifetime and reliability, are important properties for electrical contacts. To clarify the characteristics and the mechanism of the generation of the EM noise, the arc column and voltage fluctuations generated by slowly breaking contacts with external direct current (DC) magnetic field, up to 20 mT, was investigated experimentally using Ag90.7wt%SnO2 9.3wt% material. Firstly the motion of the arc column is measured by high-speed camera. Secondary, the distribution of the motion of the arc and contact voltage are discussed. It was revealed that the contact voltage fluctuation in the arc duration is related to the arc column motion.

  • Influence of Contact Material Vapor on Thermodynamic and Transport Properties of Arc Plasmas Occurring between Ag and Ag/SnO2 contact pairs

    Takuya HARA  Junya SEKIKAWA  

     
    BRIEF PAPER

      Page(s):
    863-866

    For break arcs occurring between Ag and Ag/SnO2 12 wt% electrical contact pairs, the electrical conductivity, viscosity and specific heat at constant pressure are calculated as thermodynamic and transport properties. Mixture rates of contact material vapor are 0%, 1%, 10% and 100%. Influence of the contact material on the properties is investigated. Temperature for the calculation ranges from 2000 K to 20000 K. Following results are shown. When the mixture rate is changed, the electrical conductivity varies at lower temperature (< 10000 K), and the viscosity and specific heat vary widely at all temperature range. The electrical conductivity is independent of the mixture rate when the temperature is exceeding 10000 K. The thermodynamic and transport properties are independent of the kind of the contact materials.

  • Experimental Study on Root Profile of Molten Bridge under Different Current at Low Opening Speed

    Xinyun ZHANG  Xue ZHOU  Xinglei CUI  Rui LI  Guofu ZHAI  

     
    PAPER

      Page(s):
    867-872

    To study the molten bridge phenomenon of contacts at the initial breaking process, an experimental device of molten bridge between slowly opening contacts was developed. The system consists of the contact moving control module, the circuit load and the observation module. The molten bridge of copper contact under two load conditions 9 V/19 A and 9 V/7.3 A were studied. The voltage and current characteristics curves of Cu molten bridge were extracted and the resistance and the instantaneous power of the molten bridge were analyzed. The image of the Cu molten bridge diameter was captured by CCD under 9 V/19 A and the influences of the contact force and the separation speed on the molten bridge length and the crater diameter of the anode were studied. The root profile of the Cu contacts after separation was analyzed by digital microscope. Research results show that the Cu molten bridge length has the same changing trend as the diameter of the anode crater. They both decrease with the increment of the separation speed and the decrement of the contact force.

  • Experimental Investigation and Numerical Simulation on the Role of Sphere Indenter in Measuring Contact Resistance of Flat Rivets

    Wanbin REN  Yu CHEN  Shengjun XUE  Guenther HORN  Guofu ZHAI  

     
    PAPER

      Page(s):
    873-879

    There has been increasing demand to research the measuring method to characterize the batch consistency of contact rivets. An automated test equipment has been described that makes it possible to measure the electrical contact resistance with high efficiency. The relationship between contact force and contact resistance during the loading and unloading process was measured explicitly using AgPd alloy, stainless steel and sapphire substrate material with Au coatings as sphere indenters separately. To explain the phenomena of contact resistance decreasing more slowly than the traditional theoretical results during loading, the indenter with coating and rivet are modeled by using the commercial FEM software COMSOL Multiphysics. Besides the constriction resistance, the transition region Au coating resistance and the bulk resistance of the substrate are deduced from the simulated current lines profiles and iso-potentials. The difference of electrical conductivity between indenter material and gold coating is the reason for the occurrence of the transition region.

  • Investigation on Propagation Characteristics of PD-induced Electromagnetic Wave in T-Shaped GIS Based on FDTD Method

    Mingzhe RONG  Tianhui LI  Xiaohua WANG  Dingxin LIU  Anxue ZHANG  

     
    PAPER

      Page(s):
    880-887

    When ultra-high-frequency (UHF) method is applied in partial discharge (PD) detection for GIS, the propagation process and rules of electromagnetic (EM) wave need to be understood clearly for conducting diagnosis and assessment about the real insulation status. The preceding researches are mainly concerning about the radial component of the UHF signal, but the propagation of the signal components in axial and radial directions and that perpendicular to the radial direction of the GIS tank are rarely considered. So in this paper, for a 252 kV GIS with T-shaped structure (TS), the propagation and attenuation of PD-induced EM wave in different circumferential angles and directions are investigated profoundly in time and frequency domain based on Finite Difference Time Domain (FDTD) method. The attenuation rules of the peak to peak value (Vpp) and cumulative energy are concluded. By comparing the results of straight branch and T branch, the influence of T-shaped structure over the propagation of different signal components are summarized. Moreover, the new circumferential and axial location methods proposed in the previous work are verified to be still applicable. This paper discusses the propagation mechanism of UHF signal in T-shaped tank, which provides some referential significance towards the utilization of UHF technique and better implementation of PD detection.

  • Calculate Very Fast Transient Current by the Inverse Operation of the Transient Electromagnetic Near Field due to Switch Operation in Gas Insulated Switchgear

    Weifeng XIN  Guogang ZHANG  Jianqiang WANG  Kai LIU  Yingsan GENG  Mingzhe RONG  

     
    PAPER

      Page(s):
    888-893

    For the direct measurement of very fast transient current (VFTC) due to switch operation in gas insulated switchgear (GIS), usually it will interfere the original operation or change the structure of switch. In this paper a method for calculation of transient current caused by the disconnect operation in GIS by the inverse operation of the electromagnetic (EM) near field is presented. A GIS is modeled by the finite integration technique (FIT), and all the media between the excitation source and the observation position are considered as a black box whose input is VFTC and output is EM field. A coefficient matrix is established to reflect the connection between the input and output in frequency domain, and the VFTC in frequency domain will be the result of multiplying the inverse matrix by the measurement result minus the EM field caused by transient grounding potential rise (TGPR) or transient enclosure voltage (TEV) in the observation position. Finally the time domain form of VFTC can be obtained by the interpolation and IFFT. Comparison between the result and simulation shows the validation of this method.

  • A Novel MT Ferrule with Pre-Installed Pre-polished End Fibers (MTPIPE) for Multimode Fibers

    Motohito TAKEZAKI  Ryo NAGASE  

     
    PAPER

      Page(s):
    894-899

    The required packaging density has increased and it would be difficult to employ the conventional assembly technique to produce optical circuit boards with multi-fiber connectors. So we designed an MTPIPE (MT ferrules with Pre-Installed Pre-polished End fibers) connector that can be assembling easily and that does not need a polishing process. It is suitable for use with optical circuit boards and compatible with MT or MPO connectors. We propose MTPIPE which allows us to assemble optical fiber circuit boards easily, reliably and at low cost.

  • Investigation of Noise Interference due to Connector Contact Failure in a Coaxial Cable

    Yu-ichi HAYASHI  Takaaki MIZUKI  Hideaki SONE  

     
    BRIEF PAPER

      Page(s):
    900-903

    Increased inductance values and contact resistance in connector contact surfaces due to degradation of connector contact performance have been reported. In particular, inductance increases while degradation remains minimal. We focus on slight loosening in which increased inductance values are observed without increased resistance values, and investigate the effect of loose connectors on transmission line coupling noise under such circumstances. We find a proportional relation between coupled noise current and frequency. Moreover, we find a proportional relation between the increased inductance value, which depends on the change in connector contact distribution, and the coupled noise current in the transmission line.

  • Regular Section
  • Equivalent Circuit Model of High Speed VCSEL Implemented in Circuit Simulators

    Kazunori MIYOSHI  

     
    PAPER-Lasers, Quantum Electronics

      Page(s):
    904-910

    Optical interfaces have been recently standardized as the main physical layer interfaces for most short length optical communication systems, such as IEEE802.3ae, OIF-VSR, and the Fiber Channel. As interface speed increases, the requirements for forecasting the optical characteristics of direct modulated laser diodes (LDs) also increase because those standards define the specifications for physical layers with optical domains. In this paper, a vertical-cavity surface-emitting laser (VCSEL) equivalent electronic circuit model is described with which designers can simulate the I-L-V, S-parameter, and transient characteristics of LDs on a circuit simulator by improving convergence. We show that the proposed VCSEL model can model an 850-nm bandwidth VCSEL with 10-Gbps operation.

  • The CS-Based Imaging Algorithm for Near-Field Synthetic Aperture Imaging Radiometer

    Jianfei CHEN  Yuehua LI  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Page(s):
    911-914

    Millimeter-wave synthetic aperture imaging radiometer (SAIR) is a powerful sensor for near-field high-resolution observations. However, the large receiver number and system complexity affect the application of SAIR. To overcome this shortage (receiver number), an accurate imaging algorithm based on compressed sensing (CS) theory is proposed in this paper. For reconstructing the brightness temperature images accurately from the sparse SAIR with fewer receivers, the proposed CS-based imaging algorithm is used to accomplish the sparse reconstruction with fewer visibility samples. The reconstruction is performed by minimizing the l1 norm of the transformed image. Compared to the FFT-based methods based on Fourier transform, the required receiver number can be further reduced by this method. The simulation results demonstrate that the proposed CS-based method has higher reconstruction accuracy for the sparse SAIR.

  • Design of Wideband Coupled Line DC Block with Compact Size

    Byungjoon KIM  Sangwook NAM  Hee-Ran AHN  Jae-Hoon SONG  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Page(s):
    915-917

    This letter proposes a wideband compact DC block design technique. This DC block has a wide pass-band and wide stop-band and transforms termination impedances. It comprises a pair of coupled lines on a defected ground structure (DGS) with capacitor loading. A periodic DGS pattern increases coupling, and, consequently, a wideband DC block design is allowed with a microstrip process on a high dielectric low height substrate. A DC block with equal termination impedances of 50 Ω and another that transforms 50 into 30 Ω are fabricated. The measured fractional bandwidths are 48% and 47%. The size of the DC block is 16.8× 15 mm2(0.057λ0× 0.051λ0).

  • Scalable Connection-Based Time Division Multiple Access Architecture for Wireless Network-on-Chip

    Shijun LIN  Zhaoshan LIU  Jianghong SHI  Xiaofang WU  

     
    BRIEF PAPER-Integrated Electronics

      Page(s):
    918-921

    In this paper, we propose a scalable connection-based time division multiple access architecture for wireless NoC. In this architecture, only one-hop transmission is needed when a packet is transmitted from one wired subnet to another wired subnet, which improves the communication performance and cuts down the energy consumption. Furthermore, by carefully designing the central arbiter, the bandwidth of the wireless channel can be fully used. Simulation results show that compared with the traditional WCube wireless NoC architecture, the proposed architecture can greatly improve the network throughput, and cut down the transmission latency and energy consumption with a reasonable area overhead.