The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PAR(2741hit)

1-20hit(2741hit)

  • A Two-Phase Algorithm for Reliable and Energy-Efficient Heterogeneous Embedded Systems Open Access

    Hongzhi XU  Binlian ZHANG  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2024/05/27
      Vol:
    E107-D No:10
      Page(s):
    1285-1296

    Reliability is an important figure of merit of the system and it must be satisfied in safety-critical applications. This paper considers parallel applications on heterogeneous embedded systems and proposes a two-phase algorithm framework to minimize energy consumption for satisfying applications’ reliability requirement. The first phase is for initial assignment and the second phase is for either satisfying the reliability requirement or improving energy efficiency. Specifically, when the application’s reliability requirement cannot be achieved via the initial assignment, an algorithm for enhancing the reliability of tasks is designed to satisfy the application’s reliability requirement. Considering that the reliability of initial assignment may exceed the application’s reliability requirement, an algorithm for reducing the execution frequency of tasks is designed to improve energy efficiency. The proposed algorithms are compared with existing algorithms by using real parallel applications. Experimental results demonstrate that the proposed algorithms consume less energy while satisfying the application’s reliability requirements.

  • Throughput Maximization-Based AP Clustering Methods in Downlink Cell-Free MIMO Under Partial CSI Condition Open Access

    Daisuke ISHII  Takanori HARA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E107-B No:10
      Page(s):
    653-660

    In this paper, we investigate a method for clustering user equipment (UE)-specific transmission access points (APs) in downlink cell-free multiple-input multiple-output (MIMO) assuming that the APs distributed over the system coverage know only part of the instantaneous channel state information (CSI). As a beamforming (BF) method based on partial CSI, we use a layered partially non-orthogonal zero-forcing (ZF) method based on channel matrix muting, which is applicable to the case where different transmitting AP groups are selected for each UE under partial CSI conditions. We propose two AP clustering methods. Both proposed methods first tentatively determine the transmitting APs independently for each UE and then iteratively update the transmitting APs for each UE based on the estimated throughput considering the interference among the UEs. One of the two proposed methods introduces a UE cluster for each UE into the iterative updates of the transmitting APs to balance throughput performance and scalability. Computer simulations show that the proposed methods achieve higher geometric-mean and worst user throughput than those for the conventional methods.

  • Reinforced Voxel-RCNN: An Efficient 3D Object Detection Method Based on Feature Aggregation Open Access

    Jia-ji JIANG  Hai-bin WAN  Hong-min SUN  Tuan-fa QIN  Zheng-qiang WANG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2024/04/24
      Vol:
    E107-D No:9
      Page(s):
    1228-1238

    In this paper, the Towards High Performance Voxel-based 3D Object Detection (Voxel-RCNN) three-dimensional (3D) point cloud object detection model is used as the benchmark network. Aiming at the problems existing in the current mainstream 3D point cloud voxelization methods, such as the backbone and the lack of feature expression ability under the bird’s-eye view (BEV), a high-performance voxel-based 3D object detection network (Reinforced Voxel-RCNN) is proposed. Firstly, a 3D feature extraction module based on the integration of inverted residual convolutional network and weight normalization is designed on the 3D backbone. This module can not only well retain more point cloud feature information, enhance the information interaction between convolutional layers, but also improve the feature extraction ability of the backbone network. Secondly, a spatial feature-semantic fusion module based on spatial and channel attention is proposed from a BEV perspective. The mixed use of channel features and semantic features further improves the network’s ability to express point cloud features. In the comparison of experimental results on the public dataset KITTI, the experimental results of this paper are better than many voxel-based methods. Compared with the baseline network, the 3D average accuracy and BEV average accuracy on the three categories of Car, Cyclist, and Pedestrians are improved. Among them, in the 3D average accuracy, the improvement rate of Car category is 0.23%, Cyclist is 0.78%, and Pedestrians is 2.08%. In the context of BEV average accuracy, enhancements are observed: 0.32% for the Car category, 0.99% for Cyclist, and 2.38% for Pedestrians. The findings demonstrate that the algorithm enhancement introduced in this study effectively enhances the accuracy of target category detection.

  • Node-to-Node and Node-to-Set Disjoint Paths Problems in Bicubes Open Access

    Arata KANEKO  Htoo Htoo Sandi KYAW  Kunihiro FUJIYOSHI  Keiichi KANEKO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2024/05/17
      Vol:
    E107-D No:9
      Page(s):
    1133-1139

    In this paper, we propose two algorithms, B-N2N and B-N2S, that solve the node-to-node and node-to-set disjoint paths problems in the bicube, respectively. We prove their correctness and that the time complexities of the B-N2N and B-N2S algorithms are O(n2) and O(n2 log n), respectively, if they are applied in an n-dimensional bicube with n ≥ 5. Also, we prove that the maximum lengths of the paths generated by B-N2N and B-N2S are both n + 2. Furthermore, we have shown that the algorithms can be applied in the locally twisted cube, too, with the same performance.

  • Digital/Analog-Operation of Hf-Based FeNOS Nonvolatile Memory Utilizing Ferroelectric Nondoped HfO2 Blocking Layer Open Access

    Shun-ichiro OHMI  

     
    PAPER

      Pubricized:
    2024/06/03
      Vol:
    E107-C No:9
      Page(s):
    232-236

    In this research, we investigated the digital/analog-operation utilizing ferroelectric nondoped HfO2 (FeND-HfO2) as a blocking layer (BL) in the Hf-based metal/oxide/nitride/oxide/Si (MONOS) nonvolatile memory (NVM), so called FeNOS NVM. The Al/HfN0.5/HfN1.1/HfO2/p-Si(100) FeNOS diodes realized small equivalent oxide thickness (EOT) of 4.5 nm with the density of interface states (Dit) of 5.3 × 1010 eV-1cm-2 which were suitable for high-speed and low-voltage operation. The flat-band voltage (VFB) was well controlled as 80-100 mV with the input pulses of ±3 V/100 ms controlled by the partial polarization of FeND-HfO2 BL at each 2-bit state operated by the charge injection with the input pulses of +8 V/1-100 ms.

  • Artifact Removal Using Attention Guided Local-Global Dual-Stream Network for Sparse-View CT Reconstruction Open Access

    Chang SUN  Yitong LIU  Hongwen YANG  

     
    LETTER-Biological Engineering

      Pubricized:
    2024/03/29
      Vol:
    E107-D No:8
      Page(s):
    1105-1109

    Sparse-view CT reconstruction has gained significant attention due to the growing concerns about radiation safety. Although recent deep learning-based image domain reconstruction methods have achieved encouraging performance over iterative methods, effectively capturing intricate details and organ structures while suppressing noise remains challenging. This study presents a novel dual-stream encoder-decoder-based reconstruction network that combines global path reconstruction from the entire image with local path reconstruction from image patches. These two branches interact through an attention module, which enhances visual quality and preserves image details by learning correlations between image features and patch features. Visual and numerical results show that the proposed method has superior reconstruction capabilities to state-of-the-art 180-, 90-, and 45-view CT reconstruction methods.

  • Improved Just Noticeable Difference Model Based Algorithm for Fast CU Partition in V-PCC Open Access

    Zhi LIU  Heng WANG  Yuan LI  Hongyun LU  Hongyuan JING  Mengmeng ZHANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2024/04/05
      Vol:
    E107-D No:8
      Page(s):
    1101-1104

    In video-based point cloud compression (V-PCC), the partitioning of the Coding Unit (CU) has ultra-high computational complexity. Just Noticeable Difference Model (JND) is an effective metric to guide this process. However, in this paper, it is found that the performance of traditional JND model is degraded in V-PCC. For the attribute video, due to the pixel-filling operation, the capability of brightness perception is reduced for the JND model. For the geometric video, due to the depth filling operation, the capability of depth perception is degraded in the boundary area for depth based JND models (JNDD). In this paper, a joint JND model (J_JND) is proposed for the attribute video to improve the brightness perception capacity, and an occupancy map guided JNDD model (O_JNDD) is proposed for the geometric video to improve the depth difference estimation accuracy of the boundaries. Based on the two improved JND models, a fast V-PCC Coding Unit (CU) partitioning algorithm is proposed with adaptive CU depth prediction. The experimental results show that the proposed algorithm eliminates 27.46% of total coding time at the cost of only 0.36% and 0.75% Bjontegaard Delta rate increment under the geometry Point-to-Point (D1) error and attribute Luma Peak-signal-Noise-Ratio (PSNR), respectively.

  • MDX-Mixer: Music Demixing by Leveraging Source Signals Separated by Existing Demixing Models Open Access

    Tomoyasu NAKANO  Masataka GOTO  

     
    PAPER-Music Information Processing

      Pubricized:
    2024/04/05
      Vol:
    E107-D No:8
      Page(s):
    1079-1088

    This paper presents MDX-Mixer, which improves music demixing (MDX) performance by leveraging source signals separated by multiple existing MDX models. Deep-learning-based MDX models have improved their separation performances year by year for four kinds of sound sources: “vocals,” “drums,” “bass,” and “other”. Our research question is whether mixing (i.e., weighted sum) the signals separated by state-of-the-art MDX models can obtain either the best of everything or higher separation performance. Previously, in singing voice separation and MDX, there have been studies in which separated signals of the same sound source are mixed with each other using time-invariant or time-varying positive mixing weights. In contrast to those, this study is novel in that it allows for negative weights as well and performs time-varying mixing using all of the separated source signals and the music acoustic signal before separation. The time-varying weights are estimated by modeling the music acoustic signals and their separated signals by dividing them into short segments. In this paper we propose two new systems: one that estimates time-invariant weights using 1×1 convolution, and one that estimates time-varying weights by applying the MLP-Mixer layer proposed in the computer vision field to each segment. The latter model is called MDX-Mixer. Their performances were evaluated based on the source-to-distortion ratio (SDR) using the well-known MUSDB18-HQ dataset. The results show that the MDX-Mixer achieved higher SDR than the separated signals given by three state-of-the-art MDX models.

  • On Easily Reconstructable Logic Functions Open Access

    Tsutomu SASAO  

     
    PAPER

      Pubricized:
    2024/04/16
      Vol:
    E107-D No:8
      Page(s):
    913-921

    This paper shows that sum-of-product expression (SOP) minimization produces the generalization ability. We show this in three steps. First, various classes of SOPs are generated. Second, minterms of SOP are randomly selected to generate partially defined functions. And, third, from the partially defined functions, original functions are reconstructed by SOP minimization. We consider Achilles heel functions, majority functions, monotone increasing cascade functions, functions generated from random SOPs, monotone increasing random SOPs, circle functions, and globe functions. As for the generalization ability, the presented method is compared with Naive Bayes, multi-level perceptron, support vector machine, JRIP, J48, and random forest. For these functions, in many cases, only 10% of the input combinations are sufficient to reconstruct more than 90% of the truth tables of the original functions.

  • Triangle Projection Algorithm in ADMM-LP Decoding of LDPC Codes Open Access

    Yun JIANG  Huiyang LIU  Xiaopeng JIAO  Ji WANG  Qiaoqiao XIA  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2024/03/18
      Vol:
    E107-A No:8
      Page(s):
    1364-1368

    In this letter, a novel projection algorithm is proposed in which projection onto a triangle consisting of the three even-vertices closest to the vector to be projected replaces check polytope projection, achieving the same FER performance as exact projection algorithm in both high-iteration and low-iteration regime. Simulation results show that compared with the sparse affine projection algorithm (SAPA), it can improve the FER performance by 0.2 dB as well as save average number of iterations by 4.3%.

  • Analytical Model of Maximum Operating Frequency of Class-D ZVS Inverter with Linearized Parasitic Capacitance and any Duty Ratio Open Access

    Yi XIONG  Senanayake THILAK  Yu YONEZAWA  Jun IMAOKA  Masayoshi YAMAMOTO  

     
    PAPER-Circuit Theory

      Pubricized:
    2023/12/05
      Vol:
    E107-A No:8
      Page(s):
    1115-1126

    This paper proposes an analytical model of maximum operating frequency of class-D zero-voltage-switching (ZVS) inverter. The model includes linearized drain-source parasitic capacitance and any duty ratio. The nonlinear drain-source parasitic capacitance is equally linearized through a charge-related equation. The model expresses the relationship among frequency, shunt capacitance, duty ratio, load impedance, output current phase, and DC input voltage under the ZVS condition. The analytical result shows that the maximum operating frequency under the ZVS condition can be obtained when the duty ratio, the output current phase, and the DC input voltage are set to optimal values. A 650 V/30 A SiC-MOSFET is utilized for both simulated and experimental verification, resulting in good consistency.

  • VH-YOLOv5s: Detecting the Skin Color of Plectropomus leopardus in Aquaculture Using Mobile Phones Open Access

    Beibei LI  Xun RAN  Yiran LIU  Wensheng LI  Qingling DUAN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/03/04
      Vol:
    E107-D No:7
      Page(s):
    835-844

    Fish skin color detection plays a critical role in aquaculture. However, challenges arise from image color cast and the limited dataset, impacting the accuracy of the skin color detection process. To address these issues, we proposed a novel fish skin color detection method, termed VH-YOLOv5s. Specifically, we constructed a dataset for fish skin color detection to tackle the limitation posed by the scarcity of available datasets. Additionally, we proposed a Variance Gray World Algorithm (VGWA) to correct the image color cast. Moreover, the designed Hybrid Spatial Pyramid Pooling (HSPP) module effectively performs multi-scale feature fusion, thereby enhancing the feature representation capability. Extensive experiments have demonstrated that VH-YOLOv5s achieves excellent detection results on the Plectropomus leopardus skin color dataset, with a precision of 91.7%, recall of 90.1%, mAP@0.5 of 95.2%, and mAP@0.5:0.95 of 57.5%. When compared to other models such as Centernet, AutoAssign, and YOLOX-s, VH-YOLOv5s exhibits superior detection performance, surpassing them by 2.5%, 1.8%, and 1.7%, respectively. Furthermore, our model can be deployed directly on mobile phones, making it highly suitable for practical applications.

  • Determination Method of Cascaded Number for Lumped Parameter Models Oriented to Transmission Lines Open Access

    Risheng QIN  Hua KUANG  He JIANG  Hui YU  Hong LI  Zhuan LI  

     
    PAPER-Electronic Circuits

      Pubricized:
    2023/12/20
      Vol:
    E107-C No:7
      Page(s):
    201-209

    This paper proposes a determination method of the cascaded number for lumped parameter models (LPMs) of the transmission lines. The LPM is used to simulate long-distance transmission lines, and the cascaded number significantly impacts the simulation results. Currently, there is a lack of a system-level determination method of the cascaded number for LPMs. Based on the theoretical analysis and eigenvalue decomposition of network matrix, this paper discusses the error in resonance characteristics between distributed parameter model and LPMs. Moreover, it is deduced that optimal cascaded numbers of the cascaded π-type and T-type LPMs are the same, and the Γ-type LPM has a lowest analog accuracy. The principle that the maximum simulation frequency is less than the first resonance frequency of each segment is presented. According to the principle, optimal cascaded numbers of cascaded π-type, T-type, and Γ-type LPMs are obtained. The effectiveness of the proposed determination method is verified by simulation.

  • Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs Open Access

    Yuki KAWAKAMI  Shun TAKAHASHI  Kazuhisa SETO  Takashi HORIYAMA  Yuki KOBAYASHI  Yuya HIGASHIKAWA  Naoki KATOH  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2024/02/16
      Vol:
    E107-D No:6
      Page(s):
    732-740

    We explore the maximum total number of edge crossings and the maximum geometric thickness of the Euclidean minimum-weight (k, ℓ)-tight graph on a planar point set P. In this paper, we show that (10/7-ε)|P| and (11/6-ε)|P| are lower bounds for the maximum total number of edge crossings for any ε > 0 in cases (k,ℓ)=(2,3) and (2,2), respectively. We also show that the lower bound for the maximum geometric thickness is 3 for both cases. In the proofs, we apply the method of arranging isomorphic units regularly. While the method is developed for the proof in case (k,ℓ)=(2,3), it also works for different ℓ.

  • Development of Liquid-Phase Bioassay Using AC Susceptibility Measurement of Magnetic Nanoparticles Open Access

    Takako MIZOGUCHI  Akihiko KANDORI  Keiji ENPUKU  

     
    PAPER

      Pubricized:
    2023/11/21
      Vol:
    E107-C No:6
      Page(s):
    183-189

    Simple and quick tests at medical clinics have become increasingly important. Magnetic sensing techniques have been developed to detect biomarkers using magnetic nanoparticles in liquid-phase assays. We developed a biomarker assay that involves using an alternating current (AC) susceptibility measurement system that uses functional magnetic particles and magnetic sensing technology. We also developed compact biomarker measuring equipment to enable quick testing. Our assay is a one-step homogeneous assay that involves simply mixing a sample with a reagent, shortening testing time and simplifying processing. Using our compact measuring equipment, which includes anisotropic magneto resistance (AMR) sensors, we conducted high-sensitivity measurements of extremely small amounts of two biomarkers (C-reactive protein, CRP and α-Fetoprotein, AFP) used for diagnosing arteriosclerosis and malignant tumors. The results indicate that an extremely small amount of CRP and AFP could be detected within 15 min, which demonstrated the possibility of a simple and quick high-sensitivity immunoassay that involves using an AC-susceptibility measurement system.

  • Estimation of Core Size Distribution of Magnetic Nanoparticles Using High-Tc SQUID Magnetometer and Particle Swarm Optimizer-Based Inversion Technique Open Access

    Mohd Mawardi SAARI  Mohd Herwan SULAIMAN  Toshihiko KIWA  

     
    PAPER

      Pubricized:
    2023/10/25
      Vol:
    E107-C No:6
      Page(s):
    176-182

    In this work, the core size estimation technique of magnetic nanoparticles (MNPs) using the static magnetization curve obtained from a high-Tc SQUID magnetometer and a metaheuristic inversion technique based on the Particle Swarm Optimizer (PSO) algorithm is presented. The high-Tc SQUID magnetometer is constructed from a high-Tc SQUID sensor coupled by a flux transformer to sense the modulated magnetization signal from a sample. The magnetization signal is modulated by the lateral vibration of the sample on top of a planar differential detection coil of the flux transformer. A pair of primary and excitation coils are utilized to apply an excitation field parallel to the sensitive axis of the detection coil. Using the high-Tc SQUID magnetometer, the magnetization curve of a commercial MNP sample (Resovist) was measured in a logarithmic scale of the excitation field. The PSO inverse technique is then applied to the magnetization curve to construct the magnetic moment distribution. A multimodal normalized log-normal distribution was used in the minimization of the objective function of the PSO inversion technique, and a modification of the PSO search region is proposed to improve the exploration and exploitation of the PSO particles. As a result, a good agreement on the Resovist magnetic core size was obtained between the proposed technique and the non-negative least square (NNLS) inversion technique. The estimated core sizes of 8.0484 nm and 20.3018 nm agreed well with the values reported in the literature using the commercial low-Tc SQUID magnetometer with the SVD and NNLS inversion techniques. Compared to the NNLS inversion technique, the PSO inversion technique had merits in exploring an optimal core size distribution freely without being regularized by a parameter and facilitating an easy peak position determination owing to the smoothness of the constructed distribution. The combination of the high-Tc SQUID magnetometer and the PSO-based reconstruction technique offers a powerful approach for characterizing the MNP core size distribution, and further improvements can be expected from the recent state-of-the-art optimization algorithm to optimize further the computation time and the best objective function value.

  • Dataset Distillation Using Parameter Pruning Open Access

    Guang LI  Ren TOGO  Takahiro OGAWA  Miki HASEYAMA  

     
    LETTER-Image

      Pubricized:
    2023/09/06
      Vol:
    E107-A No:6
      Page(s):
    936-940

    In this study, we propose a novel dataset distillation method based on parameter pruning. The proposed method can synthesize more robust distilled datasets and improve distillation performance by pruning difficult-to-match parameters during the distillation process. Experimental results on two benchmark datasets show the superiority of the proposed method.

  • FA-YOLO: A High-Precision and Efficient Method for Fabric Defect Detection in Textile Industry Open Access

    Kai YU  Wentao LYU  Xuyi YU  Qing GUO  Weiqiang XU  Lu ZHANG  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2023/09/04
      Vol:
    E107-A No:6
      Page(s):
    890-898

    The automatic defect detection for fabric images is an essential mission in textile industry. However, there are some inherent difficulties in the detection of fabric images, such as complexity of the background and the highly uneven scales of defects. Moreover, the trade-off between accuracy and speed should be considered in real applications. To address these problems, we propose a novel model based on YOLOv4 to detect defects in fabric images, called Feature Augmentation YOLO (FA-YOLO). In terms of network structure, FA-YOLO adds an additional detection head to improve the detection ability of small defects and builds a powerful Neck structure to enhance feature fusion. First, to reduce information loss during feature fusion, we perform the residual feature augmentation (RFA) on the features after dimensionality reduction by using 1×1 convolution. Afterward, the attention module (SimAM) is embedded into the locations with rich features to improve the adaptation ability to complex backgrounds. Adaptive spatial feature fusion (ASFF) is also applied to output of the Neck to filter inconsistencies across layers. Finally, the cross-stage partial (CSP) structure is introduced for optimization. Experimental results based on three real industrial datasets, including Tianchi fabric dataset (72.5% mAP), ZJU-Leaper fabric dataset (0.714 of average F1-score) and NEU-DET steel dataset (77.2% mAP), demonstrate the proposed FA-YOLO achieves competitive results compared to other state-of-the-art (SoTA) methods.

  • Investigating the Efficacy of Partial Decomposition in Kit-Build Concept Maps for Reducing Cognitive Load and Enhancing Reading Comprehension Open Access

    Nawras KHUDHUR  Aryo PINANDITO  Yusuke HAYASHI  Tsukasa HIRASHIMA  

     
    PAPER-Educational Technology

      Pubricized:
    2024/01/11
      Vol:
    E107-D No:5
      Page(s):
    714-727

    This study investigates the efficacy of a partial decomposition approach in concept map recomposition tasks to reduce cognitive load while maintaining the benefits of traditional recomposition approaches. Prior research has demonstrated that concept map recomposition, involving the rearrangement of unconnected concepts and links, can enhance reading comprehension. However, this task often imposes a significant burden on learners’ working memory. To address this challenge, this study proposes a partial recomposition approach where learners are tasked with recomposing only a portion of the concept map, thereby reducing the problem space. The proposed approach aims at lowering the cognitive load while maintaining the benefits of traditional recomposition task, that is, learning effect and motivation. To investigate the differences in cognitive load, learning effect, and motivation between the full decomposition (the traditional approach) and partial decomposition (the proposed approach), we have conducted an experiment (N=78) where the participants were divided into two groups of “full decomposition” and “partial decomposition”. The full decomposition group was assigned the task of recomposing a concept map from a set of unconnected concept nodes and links, while the partial decomposition group worked with partially connected nodes and links. The experimental results show a significant reduction in the embedded cognitive load of concept map recomposition across different dimensions while learning effect and motivation remained similar between the conditions. On the basis of these findings, educators are recommended to incorporate partially disconnected concept maps in recomposition tasks to optimize time management and sustain learner motivation. By implementing this approach, instructors can conserve cognitive resources and allocate saved energy and time to other activities that enhance the overall learning process.

  • Effects of Parasitic Elements on L-Type LC/CL Matching Circuits Open Access

    Satoshi TANAKA  Takeshi YOSHIDA  Minoru FUJISHIMA  

     
    PAPER

      Pubricized:
    2023/11/07
      Vol:
    E107-A No:5
      Page(s):
    719-726

    L-type LC/CL matching circuits are well known for their simple analytical solutions and have been applied to many radio-frequency (RF) circuits. When actually constructing a circuit, parasitic elements are added to inductors and capacitors. Therefore, each L and C element has a self-resonant frequency, which affects the characteristics of the matching circuit. In this paper, the parallel parasitic capacitance to the inductor and the series parasitic inductor to the capacitance are taken up as parasitic elements, and the details of the effects of the self-resonant frequency of each element on the S11, voltage standing wave ratio (VSWR) and S21 characteristics are reported. When a parasitic element is added, each characteristic basically tends to deteriorate as the self-resonant frequency decreases. However, as an interesting feature, we found that the combination of resonant frequencies determines the VSWR and passband characteristics, regardless of whether it is the inductor or the capacitor.

1-20hit(2741hit)