The search functionality is under construction.
The search functionality is under construction.

IEICE TRANSACTIONS on Electronics

  • Impact Factor

    0.63

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.3

Advance publication (published online immediately after acceptance)

Volume E86-C No.9  (Publication Date:2003/09/01)

    Special Issue on Recent Progress in Photon Detection Technology
  • FOREWORD

    Takao ANDO  

     
    FOREWORD

      Page(s):
    1789-1789
  • Ultra-High-Sensitivity New Super-HARP Pickup Tube and Its Camera

    Kenkichi TANIOKA  Tomoki MATSUBARA  Yuji OHKAWA  Kazuhiro MIYAKAWA  Shiro SUZUKI  Tamotsu TAKAHATA  Norifumi EGAMI  Koichi OGUSU  Akira KOBAYASHI  Tadaaki HIRAI  Toshiaki KAWAI  Masanori HOMBO  Tetsuo YOSHIDA  

     
    INVITED PAPER

      Page(s):
    1790-1795

    We have developed an ultrahigh-sensitivity "New Super-HARP" handheld camera, which has a sensitivity that is about 100 times as great as that of a CCD camera. The sensitivity of TV cameras is determined by the performance of the imaging device. We developed the world's first imaging device that achieves high sensitivity and high picture quality by using the avalanche multiplication phenomenon in an amorphous selenium photoconductive target. This "Super-HARP" pickup tube, which has already been used in TV production, has a selenium target 8-µm thick. It is about 10 times as sensitive as CCDs. We have now developed a greatly improved version of the Super-HARP tube with a target 25-µm thick. This improved version, called the New Super-HARP pickup tube, is about 10 times as sensitive as the Super-HARP pickup tube. The New Super-HARP handheld camera equipped with the new tubes has a maximum sensitivity of 11 lx at F8. This camera is a powerful tool for reporting breaking news at night and other low-light conditions, the production of scientific programs, and numerous other applications.

  • Passive Geiger Mode Operation of a Si Two-Photon Absorption Avalanche Photodiode and Its Temperature Dependence

    Toshiaki KAGAWA  Suguru ARAI  

     
    PAPER

      Page(s):
    1796-1799

    Competition of two-photon and one-photon absorption in Si-APD was studied. Device should be cooled down in order to clearly observe two-photon absorption at low illumination intensity. Passive Geiger mode operation was studied to sensitively detect small number of carriers generated by two-photon absorption. The illumination intensity dependence of the photocurrent pulse count number is well explained by taking into account the two absorption mechanisms and a dead time period that depends on bias voltage.

  • 1550 nm Single-Photon Detection for the Demonstration of Unconditionally Secure Fiber-Optic Quantum Key Distribution over 50 km

    Akio YOSHIZAWA  Ryosaku KAJI  Hidemi TSUCHIDA  

     
    PAPER

      Page(s):
    1800-1804

    The performance of an indium-gallium-arsenide avalanche photodiode serving as a 1550 nm single-photon detector is investigated. Quantum efficiency is evaluated for laser pulses with an average of < 0.015 photons per pulse, which are important for the demonstration of unconditionally secure quantum key distribution [G. Brassard et al.: Phys. Rev. Lett. 85, 6, p.1330 (2000)]. An operating temperature of 243 K is achieved by thermo-electrical cooling, yielding a quantum efficiency of 18% with a dark-count probability per gate of 2.8 10-5. The results obtained here guarantee unconditionally secure fiber-optic quantum key distribution over 50 km.

  • Back-Irradiation Type Photo-Detector Arrays Using Field Emitter Device

    Takashi ONO  Kazuaki SAWADA  Young Chul JUNG  Yoshitaka MORIYASU  Hidekuni TAKAO  Makoto ISHIDA  

     
    PAPER

      Page(s):
    1805-1809

    A new type of photodetector called "photosensitive floating field emitter, (PFFE)" has been proposed. The PFFE device combines an n-type cone-shaped triode field emitter with a-Si p-i-n photodiode film. However, a PFFE cannot detect two-dimensional distributions of light intensity. In this paper, we propose a novel structure to overcome the above this problem of the PFFE. The device was fabricated on a silicon-on-sapphire substrate to permit irradiation from the backside. p-n photodiodes were constructed within a field emitters, the n+ region being separated by p+ regions to permit detection of two- dimensional light distributions. The emission current of the PFFE/SOS was found to be proportional to the illumination intensity, but the quantum efficiency was only about 2%. This quantum efficiency is lower than that expected. Under irradiation, the emission current increased, but the gate-leakage current increased. This gate-leakage current was several orders of magnitude larger than the emission current. Almost photo-generated electrons lost in the gate electrode.

  • An Ultra-High-Sensitivity HDTV Camcorder

    Junichi YAMAZAKI  Masayuki MIYAZAKI  Tsuneo IHARA  Itaru MIZUNO  Kazuo YOSHIKAWA  Shigehiro KANAYAMA  Nobuo MATSUI  Takayoshi HIRUMA  Masaharu NISHIMURA  

     
    PAPER

      Page(s):
    1810-1815

    An ultra-high-sensitivity HDTV color camcorder (camera with VTR) has been developed featuring image intensifiers with GaAsP photocathodes, which provide very high quantum efficiency. To achieve superior performance and a compact camera body, we combined three 1-inch image intensifiers with a 2/3-inch taking lens and three 2/3-inch CCDs by means of a new optical system capable of enlarging and reducing images. The camcorder provides excellent color reproducibility even under low light level conditions (0.2 lx) at an iris setting of f/2, with a signal-to-noise ratio of 55 dB at pedestal level. Its sensitivity is about 400 times greater than that of current HDTV CCD camcorders, making it particularly well suited for capturing images of faint objects in space, aurora, etc., filming the nocturnal activities of animals in their natural settings, and reporting breaking news at night.

  • Optical Sampling System Using Passively Mode-Locked Fiber Laser with KTP Crystal

    Nobuhide YAMADA  Hiroshi OHTA  Seiji NOGIWA  

     
    PAPER

      Page(s):
    1816-1823

    This very useful optical sampling system uses a passively mode-locked fiber laser as an optical sampling pulse source and is based on sum-frequency generation. The optical pulse had a sufficiently short pulse width, and its peak power was very high. In addition, it had a very low timing jitter. We could observe optical signals that were jitter-free in terms of single scanning. The sum-frequency generation conversion efficiency was 1.0 10-4 W-1, and the temporal resolution was 700 fs, when we used a 5-mm-thick KTP crystal. A 320-Gbit/s optical signal could be clearly observed. We have also developed a polarization-insensitive optical sampling system with a two-path configuration based on sum-frequency generation using the type-II phase matching condition in a KTP crystal. The polarization dependency was less than 3.5% (0.15 dB) in the wavelength range from 1520 to 1620 nm.

  • Special Issue on Recent Progress of High-Density Disk Storage
  • FOREWORD

    Hiroaki MURAOKA  

     
    FOREWORD

      Page(s):
    1824-1824
  • Thermodynamic Behavior of a Nano-Sized Magnetic Grain near the Superparamagnetic Limit

    Jian QIN  Dan WEI  

     
    PAPER

      Page(s):
    1825-1829

    A combined theory of the micromagnetic and Monte Carlo simulations is established to analyze the thermal property of a nano-sized magnetic grain. The Langevin equation of a grain's magnetic moment is the Landau-Lifshitz equation augmented by a "random-field" term representing the thermal-agitated force. The angular distribution of the magnetic moment of the grain is studied via its time evolution process. The switching of the magnetic moment vector between two energy-minimum states is observed. A simple analytical expression is obtained for the simulated attempt frequency f0, which is related to the magnetic constant of the nano-grain, and agrees well with the phenomenological value.

  • Grain Boundary Segregation of Non-magnetic Phases during Crystallization of Co-Based Glasses

    Tae Young BYUN  Yoong OH  Chong Seung YOON  Chang Kyung KIM  

     
    PAPER

      Page(s):
    1830-1834

    The segregation of non-magnetic phases such as borosilicate and Cr was investigated by crystallization behavior during the surface and bulk crystallization of Co-based amorphous alloys. The concentration of metalloids (B and Si) determined the extent of grain boundary segregation of borosilicate glass during surface crystallization. During the bulk crystallization of (Co75Cr25)0.8Si5B15 amorphous alloy, solute rejection of Cr resulted in the nucleation of Cr-deficient ferromagnetic crystals and non-magnetic σ-phase was subsequently precipitated along the grain boundary. These results show that crystallization process, i.e. nucleation and growth can be controlled to optimize the microstructure to reduce media noises in Co-based recording media.

  • Co-containing Spinel Ferrite Thin-Film Perpendicular Magnetic Recording Media with Mn-Zn Ferrite Backlayer

    Setsuo YAMAMOTO  Hirofumi KUNIKI  Hiroki KURISU  Mitsuru MATSUURA  

     
    PAPER

      Page(s):
    1835-1840

    Co-containing ferrite thin-film/Mn-Zn ferrite thin-film double-layered perpendicular media were prepared using reactive ECR sputtering and magnetron sputtering methods, and their magnetic and structural properties and recording characteristics were studied. The Mn-Zn ferrite thin-film backlayer had saturation magnetization of 3.5 kG and coercivity of 60 Oe. Reproduced voltage for the Co-containing ferrite thin-film/Mn-Zn ferrite thin-film double-layered medium was about twice of that for the Co-containing ferrite single-layer medium.

  • Effects of Grain Size and Orientation on Magnetic Properties of CoCrPt/Ti Films for Perpendicular Magnetic Recording

    Pyungwoo JANG  Sooyoul HONG  

     
    PAPER

      Page(s):
    1841-1845

    Several 2 nm seed layers were sputtered to increase coercivity (Hc) and anisotropy (Ku) of CoCrPt/Ti perpendicular recording media. Among them 2 nm Ag seed layer was very effective to increase Hc of (Co78Cr22)100-xPtx/Ti (x = 14, 20). However, the effect was more pronounced when (Co78Cr22)100-xPtx/Ti became thinner. In addition α[=4π(dM/dH)Hc] decreased when the Ag layer was used. The film thickness below which the seed Ag layer was effective was reduced with decreasing Pt content. However, the Ag seed layer did not promote (0002) texture of Ti and CoCrPt layers. Domain size was reduced when the Ag seed layer was used. The effects of Ag seed layer are thought to be due to change of exchange constant of the grains, for which the grain boundary plays an important role. Effects of film thickness and Pt content can also be explained successfully by the variation of exchange constant due to grain boundary. Some experimental evidence as well as crude mode for exchange constant variation are given.

  • Reactive ECR-Sputter-Deposition of Ni-Zn Ferrite Thin-Films for Backlayer of PMR Media

    Hirofumi WADA  Setsuo YAMAMOTO  Hiroki KURISU  Mitsuru MATSUURA  

     
    PAPER

      Page(s):
    1846-1850

    A reactive sputtering method using an Electron-Cyclotron-Resonance (ECR) microwave plasma was used to deposit Ni-Zn ferrite thin-films for a soft magnetic backlayer of Co-containing spinel ferrite thin-film perpendicular magnetic recording (PMR) media. The Ni-Zn spinel ferrite thin-films with a preferential orientation of (100) and a relatively low coercivity of 15 Oe were obtained at a high deposition rate of 14 nm/min and at a temperature below 200 degrees C. Although post-annealing treatment in air at 200 degrees C was effective to decrease the coercivity of the Ni-Zn ferrite thin-films, the saturation magnetization and initial permeability decreased and the surface smoothness was deteriorated simultaneously. The Ni-Zn ferrite thin-films prepared by ECR sputtering are promising as the backlayer of the perpendicular magnetic recording medium, but further improvement is required in terms of the soft magnetic properties, the grain size and the surface roughness.

  • Effects of Grain Size Distribution in Recording Layer on SNR and Thermal Stability in Double Layered Perpendicular Media

    Sung Chul LEE  Young Wook TAHK  Taek Dong LEE  

     
    PAPER

      Page(s):
    1851-1855

    In this work, micromagnetic simulations of writing and reading processes in a perpendicular system including a single pole head and recording media with soft underlayer (SUL) have been performed. The noise contribution from the recording layer increased with increasing grain size distribution of the recording layer but that from soft underlayer remained almost a constant at a given linear density. Details of the noise from the soft underlayer will be discussed. Also thermal decay over a long time scale of the recorded bits was investigated by the Langevin equation and the time-temperature scaling method. It was found that at the linear density of 1058 kfci narrower grain size distribution in the recording layer even in the same average grain size is very important in the point of thermal decay than expectation.

  • Improvement of Read Back Properties in HDD with PRML Signal Processing Method

    Xiaobing LIANG  Dan WEI  

     
    PAPER

      Page(s):
    1856-1860

    A series of micromagnetic models including simulations of the 3D thin film write head field, the GMR read head, the thin film media and channel codes are utilized to study the recording performance in longitudinal hard disk drives (HDD) at extremely high densities. The (0, 4/4) encoder is utilized to translate the user data into (0, 4/4) constrained codes, before the write process is performed. The write current is achieved from the constrained code in the NRZ format. The read back voltage is reshaped to the PR-IV signal and the Viterbi detector is utilized to recover the data. In a medium of 10 nm grains, the recording linear density limits with the PRML method are about 1000 kfci, which is 1.5 times of those with the PD channel.

  • Three-Dimensional (FD)2TD Analysis of Light-Beam Diffraction from Phase-Change Optical Disks with Land/Groove Recording Structures

    Toshitaka KOJIMA  Hisashi HOTTA  Yuji ASANO  

     
    PAPER

      Page(s):
    1861-1867

    The present paper deals with the frequency-dependent finite difference time domain ((FD)2TD) method analysis of the light-beam diffraction from a land/groove recording phase-change (PC) disk model with a metal (Al or Au) reflective layer in order to improve the conventional analysis for PC optical disk models with a perfectly conducting reflective layer. The diffracted fields are numerically calculated for both recorded and non-recorded states of the recording layer, and the comparison of the detected signal characteristics between two states is discussed. The crosstalk between the recording marks on lands and grooves are evaluated and the optimum groove depth is examined for Al,Au and perfectly conducting layer models.

  • Quasi-Static Read/Write Tester with Sliding Reciprocation for Perpendicular Magnetic Recording

    Takayuki KUSUMI  Kiyoshi YAMAKAWA  Naoki HONDA  Kazuhiro OUCHI  

     
    PAPER

      Page(s):
    1868-1873

    To develop ultra high density magnetic recording systems, a quasi-static system with a reciprocating medium motion against a stand still head was developed for a read/write tester. Double-layered perpendicular recording media and merged GMR heads assembled on a conventional head-gimbal assembly (HGA) were applied to evaluate the read/write performances. A smooth sliding contact motion was achieved, however, the head-to-medium spacing was varied depending on the head motion direction. The spacing in the reverse running direction of the conventional head slider seems to be smaller than that of the flying height in a high-speed spin stand. A merged ring head was suitable for perpendicular magnetic recording in the case of the reverse direction sliding.

  • In-Situ Technology for Evaluating the Stability of a Slider in 2 Dimensions

    Wei ZHANG  Bo LIU  

     
    PAPER

      Page(s):
    1874-1878

    As head-disk spacing is reduced, the effects caused by inter-molecular level interactions between head-slider and disk media are becoming a severe stability concern of head-slider's positioning in both flying height and track following directions. Therefore, there is a need to explore simple but effective methods for characterizing two dimensional (2D) stability. Ideally methods should be easy to implement in both the laboratory and in the quality control of disk drive and component manufacturing. A reading process based in-situ method is explored in this work. The method is simple and can effectively reveal the 2D stability of the head-slider in both laboratory and manufacturing environments. The results obtained also suggest that the observable sway mode vibration of the suspension can be excited earlier than the air-bearing vibration mode, when the flying height is reduced.

  • Regular Section
  • Analytical Expressions for Maximum Operating Frequencies of Emitter-Coupled Logic and Source-Coupled FET Logic Toggle Flip-Flops

    Eiichi SANO  

     
    PAPER-Electronic Circuits

      Page(s):
    1879-1885

    This paper proposes an analytical expression for the maximum operating frequency of an emitter-coupled-logic master-slave toggle flip-flop (ECL MS TFF) based on an impulse response method. The analytical expression was in good agreement with not only SPICE simulations, but also experimental values. The analytical expression also indicated that state-of-the-art InP-based heterojunction bipolar transistors have potential to achieve over 100-GHz operation in ECL MS TFFs. Also, the proposed method was applied to the maximum operating frequency of a source-coupled FET logic (SCFL) MS TFF.

  • A Robust Array Architecture for a Capacitorless MISS Tunnel-Diode Memory

    Satoru HANZAWA  Takeshi SAKATA  Tomonori SEKIGUCHI  Hideyuki MATSUOKA  

     
    PAPER-Integrated Electronics

      Page(s):
    1886-1893

    With the aim of applying a MISS tunnel-diode cell to a high-density RAM, we studied its problems and developed three circuit technologies to solve them. The first, a standby-voltage control scheme, reduces standby currents and increases the signal current by 3.4 times compared to the conventional one. The second, a hierarchical bit-line structure, reduces the number of memory cells in a bit-line without increasing the number of sense amplifiers. The third, a twin-dummy-cell technique, generates a proper reference signal to discriminate read currents. These technologies enable a capacitorless MISS diode cell with an effective cell area of 6F 2 (F: minimum feature size) to be applied to a high-density RAM.

  • New Compact 1-D PBG Microstrip Structure with Steeper Stop-Band Characteristics

    Wenmei ZHANG  Xiaowei SUN  Junfa MAO  Rong QIAN  Dan ZHANG  

     
    LETTER-Microwaves, Millimeter-Waves

      Page(s):
    1894-1897

    A new type of compact one dimension (1-D) microstrip photonic bandgap (PBG) structure for filter is presented. A miniature semiconductor-based structure band-stop filter with four cells is simulated, fabricated, and measured. Agreement between the experimental and simulation results has been achieved. The filter with four proposed PBG structure exhibits deep (about -60 dB) and steep (about 40 dB/GHz) stop-band characteristics. It also has less loss and ripples in the pass-band. The period of the PBG lattice is about 0.2 λe (λe, guiding wavelength at the center frequency of stop-band), or 0.068 λ00 wavelength in air), and the filter is very compact and much easier for fabrication and realization in MIC and MMIC.

  • Novel Built-In Current Sensor for On-Line Current Testing

    Chul Ho KWAK  Jeong Beom KIM  

     
    LETTER-Integrated Electronics

      Page(s):
    1898-1902

    This paper proposes a novel CMOS built-in current sensor (BICS) for on-line current testing. Proposed BICS detects abnormal current in circuit under test (CUT) and makes a Pass/Fail signal through comparison between the CUT current and the duplicated inverter current. This circuit consists of two current-to-voltage conversion transistors, a full swing generator, a voltage comparator, and an inverter block. It requires 16 transistors. Since this BICS does not require the extra clock, the added extra pin is only one output pin. Furthermore, the BICS does not require test mode selection. Therefore the BICS can be applied to on-line current testing. The validity and effectiveness are verified through the HSPICE simulation of circuits with defects. When the CUT is an 8 8 parallel multiplier, the area overhead of the BICS is about 4.34%.