The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

17781-17800hit(21534hit)

  • Unreachability Proofs for β Rewriting Systems by Homomorphisms

    Kiyoshi AKAMA  Yoshinori SHIGETA  Eiichi MIYAMOTO  

     
    PAPER-Automata,Languages and Theory of Computing

      Vol:
    E82-D No:2
      Page(s):
    339-347

    Given two terms and their rewriting rules, an unreachability problem proves the non-existence of a reduction sequence from one term to another. This paper formalizes a method for solving unreachability problems by abstraction; i. e. , reducing an original concrete unreachability problem to a simpler abstract unreachability problem to prove the unreachability of the original concrete problem if the abstract unreachability is proved. The class of rewriting systems discussed in this paper is called β rewriting systems. The class of β rewriting systems includes very important systems such as semi-Thue systems and Petri Nets. Abstract rewriting systems are also a subclass of β rewriting systems. A β rewriting system is defined on axiomatically formulated base structures, called β structures, which are used to formalize the concepts of "contexts" and "replacement," which are common to many rewritten objects. Each domain underlying semi-Thue systems, Petri Nets, and other rewriting systems are formalized by a β structure. A concept of homomorphisms from a β structure (a concrete domain) to a β structure (an abstract domain) is introduced. A homomorphism theorem (Theorem1)is established for β rewriting systems, which states that concrete reachability implies abstract reachability. An unreachability theorem (Corollary1) is also proved for β rewriting systems. It is the contraposition of the homomorphism theorem, i. e. , it says that abstract unreachability implies concrete unreachability. The unreachability theorem is used to solve two unreachability problems: a coffee bean puzzle and a checker board puzzle.

  • Hybrid Integrated 44 Optical Matrix Switch Module on Silica Based Planar Waveguide Platform

    Tomoaki KATO  Jun-ichi SASAKI  Tsuyoshi SHIMODA  Hiroshi HATAKEYAMA  Takemasa TAMANUKI  Shotaro KITAMURA  Masayuki YAMAGUCHI  Tatsuya SASAKI  Keiro KOMATSU  Mitsuhiro KITAMURA  Masataka ITOH  

     
    INVITED PAPER-Photonic Switching Devices

      Vol:
    E82-B No:2
      Page(s):
    357-364

    The hybrid electrical/optical multi-chip integration technique for optical modules for optical network system has been developed. Employing the technique, a 44 broadcast-and-select type optical matrix switch module has been realized. The module consists of four sets of silica waveguide 1 : 4 splitters/4 : 1 combiners, four 4-channel arrays of polarization insensitive semiconductor optical amplifiers with spot-size converters as optical gates, printed wiring chips for electrical wiring and single mode fibers for optical signal interface on planar waveguide platform fabricated by atmospheric pressure chemical vapor deposition. All the gates and the wiring chips were mounted precisely onto the platform at once in flip-chip manner by self-align technique using AuSn solder bumps. Coupling loss between the waveguide and the SOA gate was estimated to be 4.5 dB. Averaged fiber-to-fiber signal gain, on-off ratio and polarization dependent loss for each of the signal paths was 7 dB 2 dB, more than 40 dB and 0.5 dB, respectively. High speed 10 Gb/s photonic cell switching as short as 2 nsec has been successfully achieved.

  • Multi-Input Floating Gate Differential Amplifier and Applications to Intelligent Sensors

    Takeyasu SAKAI  Hiromasa NAGAI  Takashi MATSUMOTO  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    335-340

    Multi-input floating gate differential amplifier (FGDA) is proposed which can perform any convolution operation with differential structure and feedback loop. All operations are in the voltage mode. Only one terminal is required for the negative feedback which can suppress distortions due to mismatches of active elements. Possible applications include intelligent image sensor, where fully parallel DCT operation can be performed. A prototype chip is fabricated which is functional. A preliminary test result is reported.

  • A Simple Pole-Assignment Scheme for Designing Multivariable Self-Tuning Controllers

    Toru YAMAMOTO  Yujiro INOUYE  Masahiro KANEDA  

     
    PAPER-Systems and Control

      Vol:
    E82-A No:2
      Page(s):
    380-389

    Lots of self-tuning control schemes have been proposed for tuning the parameters of control systems. Among them, pole-assignment schemes have been widely used for tuning the parameters of control systems with unknown time delays. They are usually classified into two methods, the implicit and the explicit methods according to how to identify the parameters. The latter has an advantage to design a control scheme by taking account of the stability margin and control performance. However, it involves a considerably computational burden to solve a Diophantine equation. A simple scheme is proposed in this paper, which can construct a multivariable self-tuning pole-assignment control system, while taking account of the stability margin and control performance without solving a Diophantine equation.

  • A 1.9-GHz Direct Conversion Transmitter IC with Low Power On-Chip Frequency Doubler

    Shoji OTAKA  Ryuichi FUJIMOTO  Hiroshi TANIMOTO  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    313-319

    A direct conversion transmitter IC including a proposed frequency doubler, a quadrature modulator, and a 3-bit variable attenuator was fabricated using BiCMOS technology with fT of 12 GHz. This architecture employing frequency doubler is intended for realizing wireless terminals that are low in cost and small in size. The architecture is effective for reducing serious interference between PA and VCO by making the VCO frequency different from that of PA. The proposed frequency doubler comprises a current-driven 90 phase-shifter and an ECL-EXOR circuit for both low power operation and wide input power range of local oscillator (LO). The proposed frequency doubler keeps high output power even when rectangular wave from LO is applied owing to use of the current-driven 90 phase-shifter instead of a voltage-driven 90 phase-shifter. An LO leakage of less than -25 dBc, an image rejection ratio in excess of 45 dBc, and a maximum attenuation of 21 dB were measured. The transmitter IC successfully operates at LO power above -15 dBm and consumes 68 mA from 2.7 V power supply voltage. An active die size is 1.5 mm3 mm.

  • A CMOS Offset Phase Locked Loop for a GSM Transmitter

    Taizo YAMAWAKI  Masaru KOKUBO  Hiroshi HAGISAWA  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    307-312

    This paper describes a CMOS Offset Phase Locked Loop (OPLL) for a global system for mobile communications (GSM) transmitter. The OPLL is a PLL with a down-conversion mixer in the feedback path and is used in the transmit (Tx) path as a frequency converter. It has a tracking bandpass filter characteristic in such a way that the OPLL can suppress the noise in the GSM receiving band (Tx noise) without a duplexer. When the loop bandwidth of the OPLL was 1.0 MHz, the Tx noise level of -163.5 dBc/Hz, the phase error of 0.66rms, and the settling time of 40µs were achieved. The IC was implemented by using 0.35-µm CMOS process. It takes 860µm620µm of total chip area and consumes 17.6 mA with a 3.0 V power supply.

  • Low-Power Area-Efficient Pipelined A/D Converter Design Using a Single-Ended Amplifier

    Daisuke MIYAZAKI  Shoji KAWAHITO  Yoshiaki TADOKORO  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    293-300

    This paper presents a new scheme of a low-power area-efficient pipelined A/D converter using a single-ended amplifier. The proposed multiply-by-two single-ended amplifier using switched capacitor circuits has smaller DC bias current compared to the conventional fully-differential scheme, and has a small capacitor mismatch sensitivity, allowing us to use a smaller capacitance. The simple high-gain dynamic-biased regulated cascode amplifier also has an excellent switching response. These properties lead to the low-power area-efficient design of high-speed A/D converters. The estimated power dissipation of the 10-b pipelined A/D converter is less than 12 mW at 20 MSample/s.

  • A 10 Bit Current-Mode CMOS A/D Converter with a Current Predictor and a Modular Current Reference

    Soung Hoon SHIM  Kwang Sub YOON  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    279-285

    This paper describes a 10 bit CMOS current-mode A/D converter with a current predictor and a modular current reference circuit. A current predictor and a modular current reference circuit are employed to reduce the number of comparator and reference current mirrors and consequently to decrease a power dissipation. The 10 bit current-mode A/D converter is fabricated by the 0.6 µm n-well double poly/triple metal CMOS technology. The measurement results show the input current range of 16 µA to 528 µA, DNL and INL of 0.5 LSB and 1.0 LSB, conversion rate of 10 Msamples, and power dissipation of 94.4 mW with a power supply of 5 V. The effective chip area excluding the pads is 1.8 mm 2.4 mm.

  • Design of Fully Balanced Analog Systems Based on Ordinary and/or Modified Single-Ended Opamps

    Zdzis taw CZARNUL  Tetsuro ITAKURA  Noriaki DOBASHI  Takashi UENO  Tetsuya IIDA  Hiroshi TANIMOTO  

     
    INVITED PAPER

      Vol:
    E82-A No:2
      Page(s):
    256-270

    The system architectures, which allow a high performance fully balanced (FB) system based on ordinary/modified single-ended opamps to be implemented, are investigated and the basic and general requirements are formulated. Two new methods of an FB analog system design, which contribute towards achieving both a high performance IC system implementation and a great reduction of the design time are presented. It is shown that a single-ended system based on any type of opamp (rail-to-rail, constant gm, etc. ), realized in any technology (CMOS, bipolar, BiCMOS, GaAs), can be easily and effectively converted to its FB counterpart in a very practical way. Using the proposed rules, any FB system implementation with opamps (data converter, modulator, filter, etc. ) requires only a single-ended system version design and the drawbacks related to a conventional FB system design are avoided. The principles of the design are pointed out and they are verified by experimental results.

  • Performance Enhancement on Digital Signal Processors with Complex Arithmetic Capability

    Yoshimasa NEGISHI  Eiji WATANABE  Akinori NISHIHARA  Takeshi YANAGISAWA  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    238-245

    Digital Signal Processors with complex arithmetic capability (DSP-C) are useful for various applications. In this paper, we propose a method for the effective implementation of specific circuits with real coefficients on DSP-C. DSP-C has special hardware such as a complex multiplier so that a complex calculation can be performed with only one instruction. First, we show that nodes with two real coefficient input branches can be implemented by complex multiplications. We apply this implementation to 2D circuits and transversal circuits with real coefficients. Next, we introduce a new computational mode (Advanced mode) and a new multiplier into PSI, a kind of DSP-C which has been proposed already, in order to process the circuits effectively. The effectiveness of the proposed method is shown by simulation in the last part.

  • Scalability Issues in Optical Networks

    Peter OHLEN  Eilert BERGLIND  Lars THYLEN  

     
    INVITED PAPER-Photonic Networking

      Vol:
    E82-C No:2
      Page(s):
    179-186

    Since the inception of optical networking, a goal has been to create an all-optical network. The rapid breakthrough for WDM in point to point links has brought this prospect considerably closer, however, at the same time, questions regarding the scalability of the all-optical network remain. In this paper, we review our recent research in this area, partly performed within the European Union project METON (METropolitan Optical Network), and discuss the all-optical approach and different optoelectronic alternatives, mainly of the 2R (reamplify and reshape) type.

  • Integrated Circuits of Map Chaos Generators

    Hidetoshi TANAKA  Shigeo SATO  Koji NAKAJIMA  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    364-369

    A chaotic noise is one of the most important implements for information processing such as neural networks. It has been suggested that chaotic neural networks have high performance ability for information processing. In this paper, we report two designs of a compact chaotic noise generator for large integration circuits using CMOS technology. The chaotic noise is generated using map chaos. We design both of the logistic map type and the tent map type circuits. These chaotic noise generators are compact as compared with the other circuits. The results show that the successful chaotic operations of the circuits because of the positive Lyapunov number. We calculate the Lyapunov exponents to certify the results of the chaotic operations. However, it is hard to estimate its accurate number for noisy data using the conventional method. And hence, we propose the modified calculation of the Lyapunov exponent for noisy data. These two circuits are expected to be utilized for various applications.

  • Femtosecond Operation of a Polarization-Discriminating Symmetric Mach-Zehnder All-Optical Switch and Improvement in Its High-Repetition Operation

    Shigeru NAKAMURA  Yoshiyasu UENO  Kazuhito TAJIMA  

     
    PAPER-Photonic Switching Devices

      Vol:
    E82-C No:2
      Page(s):
    327-334

    We experimentally demonstrate the ultrafast and high-repetition capabilities of a polarization-discriminating symmetric Mach-Zehnder (PD-SMZ) all-optical switch. This switch, as well as an original symmetric Mach-Zehnder (SMZ) all-optical switch, is based on a highly efficient but slowly relaxing band-filling effect that is resonantly excited in a passive InGaAsP bulk waveguide. By using a mechanism that cancels out the effect of the slow relaxation, ultrafast switching is attained. We achieve a switching time of 200 fs and demultiplexing of 1.5 Tbps, showing the applicability of the SMZ or PD-SMZ all-optical switches to optical demultiplexing of well over 1 Tbps for the first time. High-repetition capability, which is another important issue apart from the switching speed, is also verified by using control pulses at a repetition rate of 10.5 GHz. We also discuss the use of nonlinearity in a semiconductor optical amplifier to further reduce the control-pulse energy.

  • Para BIT:Parallel Optical Interconnection for Large-Capacity ATM Switching Systems

    Kosuke KATSURA  Yasuhiro ANDO  Mitsuo USUI  Akira OHKI  Nobuo SATO  Nobuaki MATSUURA  Nobuyuki TANAKA  Toshiaki KAGAWA  Makoto HIKITA  

     
    INVITED PAPER-Assembly and Packaging Technologies

      Vol:
    E82-B No:2
      Page(s):
    412-421

    We have been working on a project called ParaBIT (for parallel inter-board optical interconnection technology) to achieve large-capacity switching systems. The ParaBIT module being developed as the first step in this project is a front-end module with 40 channels providing throughput of 28 Gb/s, cost-effectiveness and compactness. To realize the module, this project has developed five novel technologies: (1) 850-nm 10-ch Vertical-cavity Surface-emitting laser (VCSEL) arrays as very cost-effective light sources, (2) new high-density multiport bare fiber connectors that do not need a ferrule and spring, (3) passive optical alignment using polymeric optical waveguide film with a 45-degree mirror for coupling to the optical array chips and the waveguide, (4) transferred multichip bonding to mount optical array chips on a substrate with a positioning error of only a few micrometers, and (5) simple electronic circuits with a fixed-decision-level receiver and an APC-less transmitter, and low power consumption. Experimental results show that the design targets of throughput of 700 Mb/s per channel and a compact and cost-effectiveness structure were met. Thus, ParaBIT is a promising technology for large-capacity switching systems.

  • A Real-Time Low-Rate Video Compression Algorithm Using Multi-Stage Hierarchical Vector Quantization

    Kazutoshi KOBAYASHI  Kazuhiko TERADA  Hidetoshi ONODERA  Keikichi TAMARU  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    215-222

    We propose a real-time low-rate video compression algorithm using fixed-rate multi-stage hierarchical vector quantization. Vector quantization is suitable for mobile computing, since it demands small computation on decoding. The proposed algorithm enables transmission of 10 QCIF frames per second over a low-rate 29.2 kbps mobile channel. A frame is hierarchically divided by sub-blocks. A frame of images is compressed in a fixed rate at any video activity. For active frames, large sub-blocks for low resolution are mainly transmitted. For inactive frames, smaller sub-blocks for high resolution can be transmitted successively after a motion-compensated frame. We develop a compression system which consists of a host computer and a memory-based processor for the nearest neighbor search on VQ. Our algorithm guarantees real-time decoding on a poor CPU.

  • Spot-Size-Converter Integrated Semiconductor Optical Amplifiers for Optical Switching Systems

    Takemasa TAMANUKI  Shotaro KITAMURA  Hiroshi HATAKEYAMA  Tatsuya SASAKI  Masayuki YAMAGUCHI  

     
    PAPER-Assembly and Packaging Technologies

      Vol:
    E82-B No:2
      Page(s):
    431-438

    Spot-size-converter integrated semiconductor optical amplifiers have been developed as gate elements for optical switch matrices. An S-shape waveguide has been introduced to prevent re-coupling of unguided light to the output fiber. An angled-facet structure effectively suppressed light reflection at the end facets. Consequently, a high extinction ratio of 70 dB and a high fiber-to-fiber gain of 20 dB were achieved. Sufficient optical coupling characteristics to a flat-ended single-mode fiber with a coupling loss of 3.5 dB were also demonstrated.

  • Femtosecond Operation of a Polarization-Discriminating Symmetric Mach-Zehnder All-Optical Switch and Improvement in Its High-Repetition Operation

    Shigeru NAKAMURA  Yoshiyasu UENO  Kazuhito TAJIMA  

     
    PAPER-Photonic Switching Devices

      Vol:
    E82-B No:2
      Page(s):
    379-386

    We experimentally demonstrate the ultrafast and high-repetition capabilities of a polarization-discriminating symmetric Mach-Zehnder (PD-SMZ) all-optical switch. This switch, as well as an original symmetric Mach-Zehnder (SMZ) all-optical switch, is based on a highly efficient but slowly relaxing band-filling effect that is resonantly excited in a passive InGaAsP bulk waveguide. By using a mechanism that cancels out the effect of the slow relaxation, ultrafast switching is attained. We achieve a switching time of 200 fs and demultiplexing of 1.5 Tbps, showing the applicability of the SMZ or PD-SMZ all-optical switches to optical demultiplexing of well over 1 Tbps for the first time. High-repetition capability, which is another important issue apart from the switching speed, is also verified by using control pulses at a repetition rate of 10.5 GHz. We also discuss the use of nonlinearity in a semiconductor optical amplifier to further reduce the control-pulse energy.

  • Switching Node Consideration from the Aspect of Transmission Characteristics in Wavelength Assignment Photonic Network (WAPN)

    Tadahiko YASUI  Yoshiaki NAKANO  

     
    PAPER-Circuit Switching and Cross-Connecting

      Vol:
    E82-B No:2
      Page(s):
    306-316

    By adopting a network architecture in which not only a calling but also a called terminal can select a wavelength, a novel WDM network becomes possible. This we call Wavelength Assignment Photonic Network (WAPN). In this network wavelengths are a kind of network resources and according to requests from terminals, wavelengths are allocated or assigned to calls. In the system a wavelength used for a call is to be used for another call after the call is terminated. By supplying wavelengths to the home, a bitrate-free, protocol free or even transmission method free network can be realized. In this paper, from a viewpoint of S/N or Q factor, WAPN is evaluated with special focus on the node architecture--i. e. , from the viewpoint of node size, number of switching stages, crosstalk level,and losses, because the allowable node size is the crucial issue to decide the whole network capacity. After brief explanations of this proposed system, the model for system evaluations will be established and a node system is to be evaluated for some practical parameter values considering especially traffic characteristics of a node. As a result of this study a node system with capacity more than 100 thousands erl (about 20 Tbps throughput) can be constructed using present available technologies, which will enable us to construct large WAPN network with radius of 2,000 km and subscribers of about 50 millions.

  • A Fast and Accurate Method of Redesigning Analog Subcircuits for Technology Scaling

    Seiji FUNABA  Akihiro KITAGAWA  Toshiro TSUKADA  Goichi YOKOMIZO  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    341-347

    In this paper, we present an efficient approach for technology scaling of MOS analog circuits by using circuit optimization techniques. Our new method is based on matching equivalent circuit parameters between a previously designed circuit and the circuit undergoing redesign. This method has been applied to a MOS operational amplifier. We were able to produce a redesigned circuit with almost the same performance in under 4 hours, making this method 5 times more efficient than conventional methods

  • Traveling Type Optical Cell Buffer with Small Variation of Output Cell Level

    Shigeki KITAJIMA  Hideaki TAKANO  Masahiko KOBAYASHI  

     
    PAPER-Packet and ATM Switching

      Vol:
    E82-B No:2
      Page(s):
    281-287

    An optical cell buffer (OCB) for use in photonic ATM switch, is needed in order to resolve contention between optical cells. A 320-Gb/s-throughput switch system with 32 wavelength channels requires a buffer size of 13 and a wavelength bandwidth of 25 nm. We developed an optical cell buffer with a four-nested-taps configuration and fabricated it with electroabsorption gates and gain clamped optical amplifiers. The output level variation, which determines the stability of operating condition, is less than 2.4 dB under typical conditions and the insertion loss variation is suppressed to within 5 dB. This OCB can be used in a 320-Gb/s photonic ATM switch.

17781-17800hit(21534hit)