The search functionality is under construction.

IEICE TRANSACTIONS on Electronics

  • Impact Factor

    0.48

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.3

Advance publication (published online immediately after acceptance)

Volume E100-C No.2  (Publication Date:2017/02/01)

    Special Section on Recent Progress in Organic Molecular Electronics
  • FOREWORD Open Access

    Keizo Kato  

     
    FOREWORD

      Page(s):
    112-113
  • Effect of Optical Intensity Distribution on Conversion Efficiency of Inverted Organic Photovoltaic Cell

    Toshifumi KOBORI  Norihiko KAMATA  Takeshi FUKUDA  

     
    BRIEF PAPER

      Page(s):
    114-117

    An optical intensity distribution under light irradiation in the organic photovoltaic cell affects the absorbance of the active layer, which determines the photovoltaic performance. In this research, we evaluated the optimum thickness of the organic active layer with poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] and [6,6]-phenyl C71-butyric acid methyl ester. The spectral response of external quantum efficiency was good agreement with the simulated optical intensity distribution within a device stack as a function of the position and the wavelength. As a result, the highest photoconversion efficiency of 10.1% was achieved for the inverted device structure.

  • Blue/Green Selective Organic Photodiodes with Tandem Structure

    Kazuhiko SEGI  Shigeki NAKA  Hiroyuki OKADA  

     
    BRIEF PAPER

      Page(s):
    118-121

    Organic optical materials are possible to sense light because of its high photosensitivity and large absorption only 100 nm thick films. These characteristics can be applied to an optoelectronic device, such as an organic photodiode. In our previous report, we studied blue and green organic photodiode respectively. In this report, we investigated a tandem photodiode which was vertically stacked blue and green OPDs inserting intermediate semitransparent electrode. Individual photoresponse was confirmed in each blue/green unit.

  • Effect of Background Pressure on the Performance of Organic Field Effect Transistors with Copper Electrodes

    Cuong Manh TRAN  Tatsuya MURAKAMI  Heisuke SAKAI  Hideyuki MURATA  

     
    BRIEF PAPER

      Page(s):
    122-125

    We demonstrate the effect of vacuum pressure on the mobility (µ) and the threshold voltage (Vth) of organic field effect transistor (OFETs) using copper as source-drain electrodes. OFETs with copper electrodes deposited at high background pressure are better in electric characteristics compared with traditional devices fabricated under low pressure using gold electrodes.

  • Integration of a Low-Voltage Organic Field-Effect Transistor and a Sensing Capacitor for a Pressure-Sensing Device

    Heisuke SAKAI  Yushi TSUJI  Hideyuki MURATA  

     
    BRIEF PAPER

      Page(s):
    126-129

    We integrate a pressure sensing capacitor and a low operation voltage OFET to develop a pressure sensor. The OFET was used as a readout device and an external pressure was loaded on the sensing capacitor. The OFET operates at less than 5 V and the change in the drain current in response to the pressure load (100 kPa) is two orders of magnitude.

  • Mobility Control of TIPS-Pentacene Thin Films Prepared by Blade-Coating Method

    Ryo YAMAMICHI  Takaaki MANAKA  Dai TAGUCHI  Mitsumasa IWAMOTO  

     
    BRIEF PAPER

      Page(s):
    130-132

    Carrier transport characteristics of TIPS-pentacene single crystalline film were controlled by changing the deposition condition of the blade-coating method. Anisotropic carrier transport in the single crystalline grain was visualized by means of the time-resolved microscopic optical second harmonic generation (TRM-SHG) measurement. Slow deposition yields the film with high mobility and large transport anisotropy. For molecular crystals, intermolecular interaction can be modified easily by changing the process condition.

  • Fabrication of Bacteriorhodopsin (bR) Thin Films by Wire-Bar Coating Technique and Evaluation of Transient Photocurrent Response in Its bR Photocells

    Toshiki YAMADA  Yoshihiro HARUYAMA  Katsuyuki KASAI  Takahiro KAJI  Yukihiro TOMINARI  Shukichi TANAKA  Akira OTOMO  

     
    BRIEF PAPER

      Page(s):
    133-136

    We prepared a bR thin film by the wire-bar coating technique, and investigated the transient photo-current characteristics of the bR photocell. The transient photo-current signal of bR photocells prepared by the wire-bar coating technique and the dip coating technique was compared. An almost identical transient photo-current signal intensity was obtained both for the wire-bar coating technique and dip coating technique, while the thickness of bR thin film prepared by the wire-bar coating technique is slightly thinner than that prepared by the dip-coating technique. Transparent conductive oxide dependence of the transient photo-current signal is almost the same dependence for the bR photocells with a bR thin film prepared by both techniques. Application of the wire-bar coating technique is significant from the viewpoints of the bR's sample consumption as well as simplicity of sample preparation.

  • Polymer Surface Modification Due to Active Oxygen Species and Ultraviolet Light Exposures

    Kazuki HOSOYA  Ryo WAKAYAMA  Kei OYA  Satoru IWAMORI  

     
    BRIEF PAPER

      Page(s):
    137-140

    Active oxygen species (AOS), e.g., excited singlet oxygen atom [O(1D)], excited singlet oxygen molecules (1O2), ground-state oxygen atom [O(3P)] and hydroxyl radical (OH), generated under two wavelengths (185 and 254 nm) of ultraviolet (UV) light were exposed to polyethylene (PE), polypropylene (PP) and polystyrene (PS) sheets. We investigated effects of the AOS exposure on the surface modification of these polymer sheets. Nonwoven sheet was used for the surface modification to eliminate an effect of the UV light irradiation. Although hydrophobicity of the PE and PP surfaces was maintained, the PS was changed into the hydrophilic surface.

  • Vapor-Deposition Polymerization of Vinyl Polymer Thin Films of Naphthalene Diimide Derivatives

    Keisuke TOMIDA  Hiroshi FUJITA  Satoshi USUI  Kuniaki TANAKA  Hiroaki USUI  

     
    BRIEF PAPER

      Page(s):
    141-144

    Thin films of vinyl derivatives of naphthalene diimide were prepared by electron-assisted vapor deposition. Monomer materials of N, N'-bis(allyl)-naphthalene diimide (Allyl-NDI) and N,N'-bis(p-vinyl-benzyl)-naphthalene diimide (Sty-NDI) were newly synthesized for this purpose. Uniform films were obtained by vapor-depositing these materials, whereas spin-coating yielded nonuniform films. IR analysis suggested that Sty-NDI can be polymerized upon vapor deposition. An insoluble film of Sty-NDI was obtained by the electron-assisted vapor deposition. On the other hand, Allyl-NDI had lower reactivity for polymerization. It was concluded that Sty-NDI is a promising material for preparing thin films of vinyl polymer having naphthalene diimide units.

  • Thermal Treatment Effect on Morphology and Photo-Physical Properties of Bis-Styrylbenzene Derivatives

    Hiroyuki MOCHIZUKI  

     
    BRIEF PAPER

      Page(s):
    145-148

    Characteristics of the bis-styrylbenzene derivatives with trifluoromethyl or methyl moieties were evaluated in each as-vapor-deposited film, thermally-treated film, and the crystal from the solution. Thermal treatment dramatically changed morphologies and photo-physical properties of the vapor-deposited film.

  • Special Section on Fabrication Technologies Supporting the Photonic/Nanostructure Devices
  • FOREWORD Open Access

    Susumu Noda  

     
    FOREWORD

      Page(s):
    149-149
  • Dry Etching Technologies of Optical Device and III-V Compound Semiconductors Open Access

    Ryuichiro KAMIMURA  Kanji FURUTA  

     
    INVITED PAPER

      Page(s):
    150-155

    Dry etching is one of the elemental technologies for the fabrication of optical devices. In order to obtain the desired shape using the dry etching process, it is necessary to understand the reactivity of the materials being used to plasma. In particular, III-V compound semiconductors have a multi-layered structure comprising a plurality of elements and thus it is important to first have a full understanding of the basic trends of plasma dry etching, the plasma type and the characteristics of etching plasma sources. In this paper, III-V compound semiconductor etching for use in light sources such as LDs and LEDs, will be described. Glass, LN and LT used in the formation of waveguides and MLA will be introduced as well. And finally, the future prospects of dry etching will be described briefly.

  • Room-Temperature Bonding of Wafers with Smooth Au Thin Films in Ambient Air Using a Surface-Activated Bonding Method Open Access

    Eiji HIGURASHI  Ken OKUMURA  Yutaka KUNIMUNE  Tadatomo SUGA  Kei HAGIWARA  

     
    INVITED PAPER

      Page(s):
    156-160

    Wafers with smooth Au thin films (rms surface roughness: < 0.5nm, thickness: < 50nm) were successfully bonded in ambient air at room temperature after an Ar radio frequency plasma activation process. The room temperature bonded glass wafers without any heat treatment showed a sufficiently high die-shear strength of 47-70MPa. Transmission electron microscopy observations showed that direct bonding on the atomic scale was achieved. This surface-activated bonding method is expected to be a useful technique for future heterogeneous photonic integration.

  • GaN-Based Light-Emitting Diodes with Graphene Buffers for Their Application to Large-Area Flexible Devices Open Access

    Jitsuo OHTA  Jeong Woo SHON  Kohei UENO  Atsushi KOBAYASHI  Hiroshi FUJIOKA  

     
    INVITED PAPER

      Page(s):
    161-165

    Crystalline GaN films can be grown even on amorphous substrates with the use of graphene buffer layers by pulsed sputtering deposition (PSD). The graphene buffer layers allowed us to grow highly c-axis-oriented GaN films at low substrate temperatures. Full-color GaN-based LEDs can be fabricated on the GaN/graphene structures and they are operated successfully. This indicates that the present technique is promising for future large-area light-emitting displays on amorphous substrates.

  • Label-Free Optical Detection of Fibrinogen in Visible Region Using Nanoimprint Lithography-Based Two-Dimensional Photonic Crystal Open Access

    Tatsuro ENDO  Hiroshi KAJITA  

     
    INVITED PAPER

      Page(s):
    166-170

    For the future medical diagnostics, high-sensitive, rapid, and cost effective biosensors to detect the biomarkers have been desired. In this study, the polymer-based two-dimensional photonic crystal (2D-PC) was fabricated using nanoimprint lithography (NIL) for biosensing application. In addition, for biosensing application, label-free detection of fibrinogen which is a biomarker to diagnose the chronic obstructive pulmonary disease (COPD) could be achieved using antigen-antibody reaction high-sensitively (detection limit: pg/ml order) and rapidly. Using this polymer-based 2D-PC, optical biosensor can be developed cost effectively. Furthermore, by using polymer as a base material for fabrication of 2D-PC, label-free detection of antigen-antibody reaction can be performed in visible region.

  • Surface Emitting Devices Based on a Semiconductor Coupled Multilayer Cavity for Novel Terahertz Light Sources Open Access

    Takahiro KITADA  Hiroto OTA  Xiangmeng LU  Naoto KUMAGAI  Toshiro ISU  

     
    INVITED PAPER

      Page(s):
    171-178

    Compact and room-temperature operable terahertz emitting devices have been proposed using a semiconductor coupled multilayer cavity that consists of two functional cavity layers and three distributed Bragg reflector (DBR) multilayers. Two cavity modes with an optical frequency difference in the terahertz region are realized since two cavities are coupled by the intermediate DBR multilayer. In the proposed device, one cavity is used as the active layer for two-color lasing in the near-infrared region by current injection and the other is used as the second-order nonlinear optical medium for difference-frequency generation of the two-color fundamental laser light. The control of the nonlinear polarization by face-to-face bonding of two epitaxial wafers with different orientations is quite effective to achieve bright terahertz emission from the coupled cavity. In this study, two-color emission by optical excitation was measured for the wafer-bonded GaAs/AlGaAs coupled multilayer cavity containing self-assembled InAs quantum dots (QDs). We found that optical loss at the bonding interface strongly affects the two-color emission characteristics when the bonding was performed in the middle of the intermediate DBR multilayer. The effect was almost eliminated when the bonding position was carefully chosen by considering electric field distributions of the two modes. We also fabricated the current-injection type devices using the wafer-bonded coupled multilayer cavities. An assemble of self-assembled QDs is considered to be desirable as the optical gain medium because of the discrete nature of the electronic states and the relatively wide gain spectrum due to the inhomogeneous size distribution. The gain was, however, insufficient for two-color lasing even when the nine QD layers were used. Substituting two types of InGaAs multiple quantum wells (MQWs) for the QDs, we were able to demonstrate two-color lasing of the device when the gain peaks of MQWs were tuned to the cavity modes by lowering the operating temperature.

  • InP-Based Monolithic Integration Technologies for 100/200Gb/s Pluggable Coherent Transceivers Open Access

    Hideki YAGI  Yoshihiro YONEDA  Mitsuru EKAWA  Hajime SHOJI  

     
    INVITED PAPER

      Page(s):
    179-186

    This paper reports dual-polarization In-phase and Quadrature (DP-IQ) modulators and photodetectors integrated with the 90° hybrid using InP-based monolithic integration technologies for 100/200Gb/s coherent transmission. The DP-IQ modulator was monolithically integrated with the Mach-Zehnder modulator array consisting of deep-ridge waveguides formed through dry etching and benzocyclobutene planarization processes. This DP-IQ modulator exhibited the low half-wavelength voltage (Vπ=1.5V) and the wide 3-dB bandwidth (f3dB > 28GHz). The photodetector monolithically integrated with the 90° hybrid consisting of multimode interference structures was realized by the butt-joint regrowth. A responsivity including total loss of 7.9dB in the waveguide was as high as 0.155A/W at a wavelength of 1550nm, and responsivity imbalance of the In-phase and Quadrature channels was less than ±0.5dB over the C-band. In addition, the low dark current (less than 500pA up to 85°C @ -3.0V) and the stable operation in the accelerated aging test (test condition: -5V at 175°C) over 5,000h were successfully achieved for the p-i-n-photodiode array with a buried heterostructure formed through the selective embedding regrowth. Finally, a receiver responsivity including intrinsic loss of 3dB in the polarization beam splitter was higher than 0.070A/W at a wavelength of 1550nm through the integration of the spot-size converter, and demodulation of 128Gb/s DP-QPSK and 224Gb/s DP-16QAM modulated signals was demonstrated for the compact coherent receiver using this photodetector integrated with the 90° hybrid. Therefore, we indicated that these InP-based monolithically integrated photonic devices are very useful for 100/200Gb/s pluggable coherent transceivers.

  • Assembly Technologies for Integrated Transmitter/Receiver Optical Sub-Assembly Modules Open Access

    Keita MOCHIZUKI  Tadashi MURAO  Mizuki SHIRAO  Yoshiyuki KAMO  Nobuyuki YASUI  Takahiro YOSHIMOTO  Daisuke ECHIZENYA  Masaya SHIMONO  Hidekazu KODERA  Masamichi NOGAMI  Hiroshi ARUGA  

     
    INVITED PAPER

      Page(s):
    187-195

    We have succeeded in developing three techniques, a precise lens-alignment technique, low-loss built-in Spatial Multiplexing optics and a well-matched electrical connection for high-frequency signals, which are indispensable for realizing compact high-performance TOSAs and ROSAs employing hybrid integration technology. The lens position was controlled to within ±0.3 µm by high-power laser irradiation. All components comprising the multiplexing optics are bonded to a prism, enabling the insertion loss to be held down to 0.8 dB due to the dimensional accuracy of the prism. The addition of an FPC layer reduced the impedance mismatch at the junction between the FPC and PCB. We demonstrated a compact integrated four-lane 25 Gb/s TOSA (15.1 mm × 6.5 mm × 5.6 mm) and ROSA (17.0 mm × 12.0 mm × 7.0 mm) using the built-in spatial Mux/Demux optics with good transmission performance for 100 Gb/s Ethernet. These are respectively suitable for the QSFP28 and CFP2 form factors.

  • Evaluation of Device Parameters for Membrane Lasers on Si Fabricated with Active-Layer Bonding Followed by Epitaxial Growth

    Takuro FUJII  Koji TAKEDA  Erina KANNO  Koichi HASEBE  Hidetaka NISHI  Tsuyoshi YAMAMOTO  Takaaki KAKITSUKA  Shinji MATSUO  

     
    PAPER

      Page(s):
    196-203

    We have developed membrane distributed Bragg reflector (DBR) lasers on thermally oxidized Si substrate (SiO2/Si substrate) to evaluate the parameters of the on-Si lasers we have been developing. The lasers have InGaAsP-based multi-quantum wells (MQWs) grown on InP substrate. We used direct bonding to transfer this active epitaxial layer to SiO2/Si substrate, followed by epitaxial growth of InP to fabricate a buried-heterostructure (BH) on Si. The lateral p-i-n structure was formed by thermal diffusion of Zn and ion implantation of Si. For the purpose of evaluating laser parameters such as internal quantum efficiency and internal loss, we fabricated long-cavity lasers that have 200- to 600-µm-long active regions. The fabricated DBR lasers exhibit threshold currents of 1.7, 2.1, 2.8, and 3.7mA for active-region lengths of 200, 300, 400, and 600µm, respectively. The differential quantum efficiency also depends on active-region length. In addition, the laser characteristics depend on the distance between active region and p-doped region. We evaluated the internal loss to be 10.2cm-1 and internal quantum efficiency to be 32.4% with appropriate doping profile.

  • Regular Section
  • Design a Folded Mixer with High Conversion Gain for 2-11GHz WiMAX System

    Zhi-Ming LIN  Po-Yu KUO  Zhong-Cheng SU  

     
    PAPER-Microwaves, Millimeter-Waves

      Page(s):
    204-210

    The mixer is a crucial circuit block in a WiMax system receiver. The performance of a mixer depends on three specifications: conversion gain, linearity and noise figure. Many mixers have been recently proposed for UWB and wideband systems; however, they either cannot achieve the high conversion gain required for a WiMAX system or they are prone to high power consumption. In this paper, a folded mixer with a high conversion gain is designed for a 2-11GHz WiMAX system and it can achieve a 20MHz IF output signal. From the simulation results, the proposed folded mixer achieves a conversion gain of 18.9 to 21.5dB for the full bandwidth. With a 0.2 to 4.4dBm IIP3, the NF is 13.5 to 17.6dB. The folded mixer is designed using TSMC 0.18µm CMOS technology. The core power consumption of the mixer is 11.8mW.

  • Properties of Contact Lubricant under Elevated Temperature for Thin Gold Plated Surface

    Terutaka TAMAI  Masahiro YAMAKAWA  Ichiro TAKANO  

     
    PAPER-Electromechanical Devices and Components

      Page(s):
    211-220

    Contact lubricants have been used in electric contacts such as connectors. Contact failures for down size of connector contacts with low contact force and cost down of gold plated are a serious problem to be solved. One solution is the application of lubricants to the contacts. Particularly these contacts are exposed to elevated temperature under reflow treatment in assembling processes. It is an important subject should be clarified that the deterioration phenomenon of increases in contact resistance properties under the reflow. This degradation should be induced by two causes. Namely, one is a surface contamination due to oxidation of diffused small amount of additives through gold plated layer. The other is decomposition of the coated lubricants. In this study, first of all, degradation of contact resistance properties were measured, and change of images of STM for exposure time of high temperature were observed. To clarify more in detail this degradation of the contact resistance, for both clean gold plated surface and heated clean surface were examined by using XPS and AES analysis. As results, contact resistance properties of clean surface were found to degrade for exposure at the elevated temperature. This degradation was found due to oxidation of base metal nickel and cobalt additive to gold plated surface. However, influence of the contact lubrication on the degradation of contact resistance was not recognized. The change of composition of an olefin lubricant was discussed by using STM images. Moreover, growth of oxide film on the clean surface was found as cubic law by using an ellipsometry.