The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] integrated(390hit)

281-300hit(390hit)

  • An Optoelectronic Clock Recovery Circuit Using a Resonant Tunneling Diode and a Uni-Traveling-Carrier Photodiode

    Koichi MURATA  Kimikazu SANO  Tomoyuki AKEYOSHI  Naofumi SHIMIZU  Eiichi SANO  Masafumi YAMAMOTO  Tadao ISHIBASHI  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1494-1501

    A clock recovery circuit is a key component in optical communication systems. In this paper, an optoelectronic clock recovery circuit is reported that monolithically integrates a resonant tunneling diode (RTD) and a uni-traveling-carrier photodiode (UTC-PD). The circuit is an injection-locked-type RTD oscillator that uses the photo-current generated by the UTC-PD. Fundamental and sub-harmonic clock extraction is confirmed for the first time with good clock recovery circuit characteristics. The IC extracts an electrical 11.55-GHz clock signal from 11.55-Gbit/s RZ optical data streams with the wide locking range of 450 MHz and low power dissipation of 1.3 mW. Furthermore, the extraction of a sub-harmonic clock from 23.1-Gbit/s and 46.2-Gbit/s input data streams is also confirmed in the wider locking range of 600 MHz. The RMS jitter as determined from a single sideband phase noise measurement is extremely low at less than 200 fs in both cases of clock and sub-harmonic clock extraction. To our knowledge, the product of the output power and operating frequency of the circuit is the highest ever reported for injection-locked-type RTD oscillators. These characteristics indicate the feasibility of the optoelectronic clock recovery circuit for use in future ultra-high-speed fully monolithic receivers.

  • An Optoelectronic Clock Recovery Circuit Using a Resonant Tunneling Diode and a Uni-Traveling-Carrier Photodiode

    Koichi MURATA  Kimikazu SANO  Tomoyuki AKEYOSHI  Naofumi SHIMIZU  Eiichi SANO  Masafumi YAMAMOTO  Tadao ISHIBASHI  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E82-B No:8
      Page(s):
    1228-1235

    A clock recovery circuit is a key component in optical communication systems. In this paper, an optoelectronic clock recovery circuit is reported that monolithically integrates a resonant tunneling diode (RTD) and a uni-traveling-carrier photodiode (UTC-PD). The circuit is an injection-locked-type RTD oscillator that uses the photo-current generated by the UTC-PD. Fundamental and sub-harmonic clock extraction is confirmed for the first time with good clock recovery circuit characteristics. The IC extracts an electrical 11.55-GHz clock signal from 11.55-Gbit/s RZ optical data streams with the wide locking range of 450 MHz and low power dissipation of 1.3 mW. Furthermore, the extraction of a sub-harmonic clock from 23.1-Gbit/s and 46.2-Gbit/s input data streams is also confirmed in the wider locking range of 600 MHz. The RMS jitter as determined from a single sideband phase noise measurement is extremely low at less than 200 fs in both cases of clock and sub-harmonic clock extraction. To our knowledge, the product of the output power and operating frequency of the circuit is the highest ever reported for injection-locked-type RTD oscillators. These characteristics indicate the feasibility of the optoelectronic clock recovery circuit for use in future ultra-high-speed fully monolithic receivers.

  • Miniaturization of Microstrip Line and Coplanar Waveguide for Microwave Integrated Circuits by Using Airbridge Technology

    Keren LI  

     
    PAPER-Passive Devices and Circuits

      Vol:
    E82-C No:7
      Page(s):
    1159-1165

    This paper presents a technique for miniaturization of microstrip line and coplanar waveguide for microwave integrated circuits by using airbridge technology. A theoretical analysis is given by a combination of the conformal mapping technique and the variational principle. Numerical results demonstrate significant effects on size reduction as well as wide range of the characteristic impedance variation due to the airbridge.

  • Synthesis and Analysis of a Digital Chaos Circuit Generating Multiple-Scroll Strange Attractors

    Kei EGUCHI  Takahiro INOUE  Akio TSUNEDA  

     
    PAPER

      Vol:
    E82-A No:6
      Page(s):
    965-972

    In this paper, a new digital chaos circuit which can generate multiple-scroll strange attractors is proposed. Being based on the piecewise-linear function which is determined by on-chip supervised learning, the proposed digital chaos circuit can generate multiple-scroll strange attractors. Hence, the proposed circuit can exhibit various bifurcation phenomena. By numerical simulations, the learning dynamics and the quasi-chaos generation of the proposed digital chaos circuit are analyzed in detail. Furthermore, as a design example of the integrated digital chaos circuit, the proposed circuit realizing the nonlinear function with five breakpoints is implemented onto the FPGA (Field Programmable Gate Array). The synthesized FPGA circuit which can generate n-scroll strange attractors (n=1, 2, 4) showed that the proposed circuit is implementable onto a single FPGA except for the SRAM.

  • A 1-V Continuous-Time Filter Using Bipolar Pseudo-Differential Transconductors

    Fujihiko MATSUMOTO  Yasuaki NOGUCHI  

     
    PAPER

      Vol:
    E82-A No:6
      Page(s):
    973-980

    Low-voltage technique for IC is getting one of the most important matters. It is quite difficult to realize a filter which can operate at 1 V or less because the base-emitter voltage of transistors can hardly be reduced. A design of a low-voltage continuous-time filter is presented in this paper. The basic building block of the filter is a pseudo-differential transconductor which has no tail current source. Therefore, the operating voltage is lower than that of an emitter-coupled pair. However, the common-mode (CM) gain of the transconductor is quite high and the CMRR is low. In order to reduce the CM gain, a CM feedback circuit is employed. The transconductance characteristic is expressed as the function of hyperbolic cosine. The designed filter is a fifth-order gyrator-C filter. The transconductor and the filter which has a fifth-order Butterworth lowpass characteristic are demonstrated by PSpice simulation. Transconductance characteristic, CMRR and stability of the transconductor are confirmed through the simulation. In the analysis of the filter, frequency response and offset voltage are examined. It is shown that the filter which has corner frequency of the order of megahertz can operate at a 1 V supply voltage.

  • Data Traffic Distributed Control Scheme for Wideband and Narrowband Integrated Services in PWC

    Shaokai YU  Theodore BOUT  

     
    PAPER

      Vol:
    E82-B No:6
      Page(s):
    834-840

    Future cellular systems are envisioned to support mixed traffic, and ultimately multimedia services. However, a mixture of voice and data requires novel service mechanisms that can guarantee quality of service. In order to transfer high-speed data, multislot channel allocation is seen as a favoured solution to the present systems with the least compromise to circuit- switched services. This paper evaluates the performance of narrowband voice calls and multislot data packet transmission in such integrated systems by using a matrix-analytic approach. This method achieves quadratic convergence compared to the conventional spectral methods. Mobility is also considered in a prioritized cellular environment where frequent handoff has the potential of degrading data performance. The voice call distribution, data packets throughput, delay and waiting time distribution are derived. Moreover, a new multiple priority-based distributed control algorithm and a voice rate control scheme are enforced to mitigate the queuing congestion of data packets. The numerical results derived from this study show that larger data packets incur longer latency and the use of these flexible schemes can improve the overall performance.

  • A 1-V, 1-Vp-p Input Range, Four-Quadrant Analog Multiplier Using Neuron-MOS Transistors

    Koichi TANNO  Okihiko ISHIZUKA  Zheng TANG  

     
    PAPER-Electronic Circuits

      Vol:
    E82-C No:5
      Page(s):
    750-757

    In this paper, a four-quadrant analog multiplier consisting of four neuron-MOS transistors and two load resistors is proposed. The proposed multiplier can be operated at only 1 V. Furthermore, the input range of the multiplier is equal to 100% of the supply voltage. The theoretical harmonic distortion caused by mobility degradation and device mismatchs is derived in detail. The performance of the proposed multiplier is characterized through HSPICE simulations with a standard 2.0 µm CMOS process with a double-poly layer. Simulations of the proposed multiplier demonstrate that the linearity error of 0.77% and a total harmonic distortion of 0.62% are obtained with full-scale input conditions. The maximum power consumption and 3 dB bandwidth are 9.56 µW and 107 MHz, respectively. The active area of the proposed multiplier is 210 µm 140 µm.

  • Neuron-MOS Current Mirror Circuit and Its Application to Multi-Valued Logic

    Jing SHEN  Koichi TANNO  Okihiko ISHIZUKA  Zheng TANG  

     
    PAPER-Circuits

      Vol:
    E82-D No:5
      Page(s):
    940-948

    A neuron-MOS transistor (νMOS) is applied to current-mode multi-valued logic (MVL) circuits. First, a novel low-voltage and low-power νMOS current mirror is presented. Then, a threshold detector and a quaternary T-gate using the proposed νMOS current mirrors are proposed. The minimum output voltage of the νMOS current mirror is decreased by VT (threshold voltage), compared with the conventional double cascode current mirror. The νMOS threshold detector is built on a νMOS current comparator originally composed of νMOS current mirrors. It has a high output swing and sharp transfer characteristics. The gradient of the proposed comparator output in the transfer region can be increased 6.3-fold compared with that in the conventional comparator. Along with improved operation of the novel current comparator, the discriminative ability of the proposed νMOS threshold detector is also increased. The performances of the proposed circuits are validated by HSPICE with Motorola 1.5 µm CMOS device parameters. Furthermore, the operation of a νMOS current mirror is also confirmed through experiments on test chips fabricated by VDEC*. The active area of the proposed νMOS current mirror is 63 µm 51 µm.

  • Development on Guided-Wave Switch Arrays

    Hirochika NAKAJIMA  

     
    INVITED PAPER-Photonic Switching Devices

      Vol:
    E82-C No:2
      Page(s):
    297-304

    State of the arts on guided-wave optical switch arrays are reviewed. In this paper, electro-optic Ti:LiNbO3 devices are mainly described in comparison with crosspoint switch element structures and switch array architectures. Packaging technologies and stability problems are discussed for practical system applications. Recent development on other materials such as semiconductor waveguides, thermo-optic glass/polymer waveguides are also reviewed briefly.

  • Integrated Circuits of Map Chaos Generators

    Hidetoshi TANAKA  Shigeo SATO  Koji NAKAJIMA  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    364-369

    A chaotic noise is one of the most important implements for information processing such as neural networks. It has been suggested that chaotic neural networks have high performance ability for information processing. In this paper, we report two designs of a compact chaotic noise generator for large integration circuits using CMOS technology. The chaotic noise is generated using map chaos. We design both of the logistic map type and the tent map type circuits. These chaotic noise generators are compact as compared with the other circuits. The results show that the successful chaotic operations of the circuits because of the positive Lyapunov number. We calculate the Lyapunov exponents to certify the results of the chaotic operations. However, it is hard to estimate its accurate number for noisy data using the conventional method. And hence, we propose the modified calculation of the Lyapunov exponent for noisy data. These two circuits are expected to be utilized for various applications.

  • Design of Fully Balanced Analog Systems Based on Ordinary and/or Modified Single-Ended Opamps

    Zdzis taw CZARNUL  Tetsuro ITAKURA  Noriaki DOBASHI  Takashi UENO  Tetsuya IIDA  Hiroshi TANIMOTO  

     
    INVITED PAPER

      Vol:
    E82-A No:2
      Page(s):
    256-270

    The system architectures, which allow a high performance fully balanced (FB) system based on ordinary/modified single-ended opamps to be implemented, are investigated and the basic and general requirements are formulated. Two new methods of an FB analog system design, which contribute towards achieving both a high performance IC system implementation and a great reduction of the design time are presented. It is shown that a single-ended system based on any type of opamp (rail-to-rail, constant gm, etc. ), realized in any technology (CMOS, bipolar, BiCMOS, GaAs), can be easily and effectively converted to its FB counterpart in a very practical way. Using the proposed rules, any FB system implementation with opamps (data converter, modulator, filter, etc. ) requires only a single-ended system version design and the drawbacks related to a conventional FB system design are avoided. The principles of the design are pointed out and they are verified by experimental results.

  • Development on Guided-Wave Switch Arrays

    Hirochika NAKAJIMA  

     
    INVITED PAPER-Photonic Switching Devices

      Vol:
    E82-B No:2
      Page(s):
    349-356

    State of the arts on guided-wave optical switch arrays are reviewed. In this paper, electro-optic Ti:LiNbO3 devices are mainly described in comparison with crosspoint switch element structures and switch array architectures. Packaging technologies and stability problems are discussed for practical system applications. Recent development on other materials such as semiconductor waveguides, thermo-optic glass/polymer waveguides are also reviewed briefly.

  • Phase-Mode Circuits for High-Performance Logic

    Takeshi ONOMI  Yoshinao MIZUGAKI  Hideki SATOH  Tsutomu YAMASHITA  Koji NAKAJIMA  

     
    INVITED PAPER-Digital Applications

      Vol:
    E81-C No:10
      Page(s):
    1608-1617

    We present two types of ICF (INHIBIT Controlled by Fluxon) gates as the basic circuits of the phase-mode logic family, and fabricate an adder circuit. The experimental result demonstrates that the carry operation followed up to 99 GHz input pulses. The performance of Josephson devices is improved by the use of junctions with high current density (Jc). We may use the high-Jc junctions without external resistive shunt in the phase-mode logic circuits because of reduction of the junction hysteresis. One of the ways to overcome the large area occupancy for geometric inductance is to utilize the effective inductance of a Josephson junction itself. We investigate a circuit construction with high-Jc inductor junctions, intrinsically overdumped junctions and junction-type resistors for the compactness of circuit integration, and discuss various aspects of the circuit construction.

  • Fabrication Processes for High-Tc Superconducting Integrated Circuits Based on Edge-Type Josephson Junctions

    Tetsuro SATOH  Mutsuo HIDAKA  Shuichi TAHARA  

     
    INVITED PAPER-High-Tc Junction Technology

      Vol:
    E81-C No:10
      Page(s):
    1532-1537

    We have studied an in situ edge preparation process and the effect of a substrate rotation during the edge preparation in order to improve the uniformity and electrical characteristics of high-Tc edge-type Josephson junctions. The improved YBa2Cu3Ox/PrBa2Cu3Ox/YBa2Cu3Ox edge junctions showed small 1σ-critical current spreads as low as 10% for 12 junctions. We have confirmed that the spreads do not increase significantly by adding groundplane over the junctions. In this paper, we will describe these processes developed for the fabrication of high-Tc superconducting integrated circuits.

  • Design Considerations of Data-Driven Self-Timed RSFQ Adder Circuits

    Nobuyuki YOSHIKAWA  Hiroshi TAGO  Kaoru YONEYAMA  

     
    INVITED PAPER-Digital Applications

      Vol:
    E81-C No:10
      Page(s):
    1618-1626

    We have designed rapid single-flux-quantum (RSFQ) adder circuits using two different architectures: one is the conventional architecture employing globally synchronous clocking and the other is the data-driven self-timed (DDST) architecture. It has been pointed out that the timing margin of the RSFQ logic is very sensitive to the circuit parameter variations which are induced by the fabrication process and the device parameter uncertainty. Considering the physical timing in the circuits, we have shown that the DDST architecture is advantageous for realizing RSFQ circuits operating at very high frequencies. We have also calculated the theoretical circuit yield of the DDST adders and shown that a four-bit system operating at 10 GHz is feasible with sufficient operating margin, considering the present 1 kA/cm2 Nb Josephson technology.

  • Ultra-Low Power Two-MOS Virtual-Short Circuit and Its Application

    Koichi TANNO  Okihiko ISHIZUKA  Zheng TANG  

     
    PAPER-Analog Signal Processing

      Vol:
    E81-A No:10
      Page(s):
    2194-2200

    In this paper, a virtual-short circuit which consists of only two MOS transistors operated in the weak-inversion region is proposed. It has the advantages of almost zero power consumption, low voltage operation, small chip area, and no needlessness of bias voltages or currents. The second order effects, such as the device mismatch, the Early effect, and the temperature dependency of the circuit are analyzed in detail. Next, current-controlled and voltage-controlled current sources using the proposed virtual-short circuit are presented as applications. The performance of the proposed circuits is estimated using SPICE simulation with MOSIS 1. 2 µm CMOS device parameters. The results are reported on this paper.

  • Dynamic Analysis of Widely Tunable Laser Diodes Integrated with Sampled- and Chirped-Grating Distributed Bragg Reflectors and an Electroabsorption Modulator

    Byoung-Sung KIM  Youngchul CHUNG  Sun-Ho KIM  

     
    PAPER-Opto-Electronics

      Vol:
    E81-C No:8
      Page(s):
    1342-1349

    Wavelength tunable laser diodes are critical components in a wide variety of WDM and packet switching architectures. And also wavelength-tuned short pulses generated from the semiconductor laser diodes are of great importance for the developments of ultrahigh speed and WDM optical communication systems. Over the past several years, both continuously and discontinuously tunable lasers incorporating periodically sampled and chirped grating have been studied theoretically and experimentally. These laser diodes show the wide tuning range of above 60 nm, stable lasing condition, and large side-mode suppression ratio. Directly modulated semiconductor laser diodes, even those with a single mode, exhibit a dynamic frequency chirp during the on/off modulation. The dynamic linewidth broadening caused by such a large frequency chirp can result in a significant penalty in the performance of high-speed long-haul optical communication systems. The CW laser diodes integrated with an external EA modulator are an breakthrough to realize the high-speed optical systems with low chirp. And also the short pulse generation using the external modulator has been realized experimentally, whose principle of the pulse generation is the optical gating of the electroabsorption modulator. In this paper, widely tunable laser diodes incorporating periodically sampled and chirped gratings and an external modulator are analyzed using an improved time-domain dynamic model. First, it is demonstrated that the improved model is very powerful in simulating the complex laser diodes with active and passive sections. And, the dynamic properties of the sampled grating DBR and chirped grating DBR laser diodes are investigated. Second, the modulation characteristics of the laser diode integrated with the external electroabsorption modulator are studied. It is shown that the external modulation are superior to the direct modulation in the aspect of the lower frequency chirp. And the pulse generation by the optical gating of the external modulator is observed theoretically.

  • Data Traffic Control and Capacity Evaluations for Voice/Data Integrated Transmission in DS-CDMA

    Minami NAGATSUKA  Yoshihiro ISHIKAWA  Shinji UEBAYASHI  

     
    PAPER

      Vol:
    E81-B No:7
      Page(s):
    1355-1364

    The next generation mobile communications systems must support multimedia communications services as well as conventional voice service. DS-CDMA is regarded as the most promising candidate, because it is indispensable to cope with multimedia. The system capacity of DS-CDMA system is limited by the total interference level. As a result, in DS-CDMA systems many users suffer very poor communication quality if the total interference level exceeds this limit. Therefore, this paper considers smoothing interference fluctuation using the difference between voice and data in a type of QoS (quality of service). In other words, voice communication is suitable for a loss system because the quality of voice communication is delay-sensitive. On the other hand, data communication is suitable for a waiting system because the quality of data communication is non-delay-sensitive. This paper focuses on a system that applies a circuit switching method for voice traffic and a reservation type packet switching method for data traffic and proposes a data traffic control method. In this proposed data traffic control method, a base station controls data transmission from a mobile station to utilize unused voice traffic resources. As a result, the proposed method achieves highly efficient use of the radio spectra by smoothing interference fluctuation in DS-CDMA systems. This paper evaluates the performance level of the proposed method from a system capacity standpoint. It is shown that the proposed method achieves higher system capacity in voice/data integrated transmission.

  • FPGA Implementation of a Digital Chaos Circuit Realizing a 3-Dimensional Chaos Model

    Kei EGUCHI  Takahiro INOUE  Akio TSUNEDA  

     
    LETTER-Nonlinear Problems

      Vol:
    E81-A No:6
      Page(s):
    1176-1178

    In this letter, a digital circuit realizing a Rossler model is proposed. The proposed circuit features exact reproducibility of chaos signals which is desired in chaos-based communication systems. By employing an FPGA implementation, the proposed circuit can achieve high-speed and low-cost realization. The chaotic behavior of the quasi-chaos of the proposed circuit is analyzed by numerical simulations. To confirm the validity of the FPGA implementation, the proposed circuit is designed by using an FPGA CAD tool, Verilog-HDL. This circuit design showed that the proposed circuit can be implemented onto a single FPGA and can realize real-time chaos generation.

  • Class A CMOS Current Conveyors

    Hyeong-Woo CHA  Satomi OGAWA  Kenzo WATANABE  

     
    LETTER-Analog Signal Processing

      Vol:
    E81-A No:6
      Page(s):
    1164-1167

    The second-generation CMOS current conveyors are developed for high-frequency analog signal processing. It consists of a source follower for the voltage input and a regulated current mirror for the current input and output. The voltage and current input stages are also coupled by a current mirror to reduce the impedance of the current input port. Simulations show that this architecture provides the high input/output conductance ratio and the inherent voltage and current transfer bandwidths extending beyond 100 MHz. The prototype chips fabricated using 0. 6 µm CMOS process have confirmed the simulated performances, though the voltage and current bandwidth are limited to 20 MHz and 35 MHz, respectively, by the built-in capacitances of the bonding pads.

281-300hit(390hit)