Baoquan ZHONG Zhiqun CHENG Minshi JIA Bingxin LI Kun WANG Zhenghao YANG Zheming ZHU
Kazuya TADA
Suguru KURATOMI Satoshi USUI Yoko TATEWAKI Hiroaki USUI
Yoshihiro NAKA Masahiko NISHIMOTO Mitsuhiro YOKOTA
Hiroki Hoshino Kentaro Kusama Takayuki Arai
Tsuneki YAMASAKI
Kengo SUGAHARA
Cuong Manh BUI Hiroshi SHIRAI
Hiroyuki DEGUCHI Masataka OHIRA Mikio TSUJI
Hiroto Tochigi Masakazu Nakatani Ken-ichi Aoshima Mayumi Kawana Yuta Yamaguchi Kenji Machida Nobuhiko Funabashi Hideo Fujikake
Yuki Imamura Daiki Fujii Yuki Enomoto Yuichi Ueno Yosei Shibata Munehiro Kimura
Keiya IMORI Junya SEKIKAWA
Naoki KANDA Junya SEKIKAWA
Yongzhe Wei Zhongyuan Zhou Zhicheng Xue Shunyu Yao Haichun Wang
Mio TANIGUCHI Akito IGUCHI Yasuhide TSUJI
Kouji SHIBATA Masaki KOBAYASHI
Zhi Earn TAN Kenjiro MATSUMOTO Masaya TAKAGI Hiromasa SAEKI Masaya TAMURA
Misato ONISHI Kazuhiro YAMAGUCHI Yuji SAKAMOTO
Koya TANIKAWA Shun FUJII Soma KOGURE Shuya TANAKA Shun TASAKA Koshiro WADA Satoki KAWANISHI Takasumi TANABE
Shotaro SUGITANI Ryuichi NAKAJIMA Keita YOSHIDA Jun FURUTA Kazutoshi KOBAYASHI
Ryosuke Ichikawa Takumi Watanabe Hiroki Takatsuka Shiro Suyama Hirotsugu Yamamoto
Chan-Liang Wu Chih-Wen Lu
Umer FAROOQ Masayuki MORI Koichi MAEZAWA
Ryo ITO Sumio SUGISAKI Toshiyuki KAWAHARAMURA Tokiyoshi MATSUDA Hidenori KAWANISHI Mutsumi KIMURA
Paul Cain
Arie SETIAWAN Shu SATO Naruto YONEMOTO Hitoshi NOHMI Hiroshi MURATA
Seiichiro Izawa
Hang Liu Fei Wu
Keiji GOTO Toru KAWANO Ryohei NAKAMURA
Takahiro SASAKI Yukihiro KAMIYA
Xiang XIONG Wen LI Xiaohua TAN Yusheng HU
Tohgo HOSODA Kazuyuki SAITO
Yihan ZHU Takashi OHSAWA
Shengbao YU Fanze MENG Yihan SHEN Yuzhu HAO Haigen ZHOU
Soma YASUI Fujio OHISHI Hiroaki USUI
Thin films of Teflon AF 1600 were prepared by an electron-assisted (e-assist) deposition method. IR analysis revealed that the e-assist deposition generates small amount of polar groups such as carboxylic acid in the molecular structure of the deposited films. The polar groups contributed to increase intermolecular interaction and led to remarkable improvement in the adhesion strength and robustness of the films especially when a bias voltage was applied to the substrate in the course of e-assist deposition. The vapor-deposited Teflon AF films had refractive indices of 1.35 to 1.38, and were effective for antireflection coatings. The use of e-assist deposition slightly increased the refractive index as a trade-off for the improvement of film robustness.
Dai TAGUCHI Takaaki MANAKA Mitsumasa IWAMOTO
Triboelectric generators have been attracting much attention as electrical power sources in scientific communities and industries. Based on dielectric physics, two microscopic routes are available as current sources: One is charge displacement and the other is dipolar rotation. We have been investigating these routes as power sources for triboelectric generation. In other words, dipolar energy transfer process during a course of depolarization has the potentiality to be utilized as triboelectric generator. In this paper, we show that polyimide polymer film with permanent dipoles, i.e., PMDA-ODA polyimide, can provide current source capacity enhanced at elevated temperature, which is in good agreement with our idea based on dipolar energy mode of triboelectric generator. That is, permanent dipoles rotate quickly at elevated temperature, and act as an enhanced current source in the dipolar energy source model of triboelectric generator.
Shohei SAKURAI Mayu IIDA Kosei OKUNUKI Masahito KUSHIDA
In this study, vertically aligned carbon nanotubes (VA-CNTs) were grown from filler-added LB films with accumulated AlFe2O4 nanoparticles and palmitic acid (C16) as the filler molecule after different hydrogen reduction temperatures of 500°C and 750°C, and the grown VA-CNTs were compared and evaluated. As a result, VA-CNTs were approximately doubled in length after 500°C hydrogen reduction compared to 750°C hydrogen reduction when AlFe2O4 NPs were used. On the other hand, when the catalyst area ratio was decreased by using palmitic acid, i.e., the distance between CNTs was increased, VA-CNTs rapidly shortened after 500°C hydrogen reduction, and VA-CNTs were no longer obtained even in the range where VA-CNTs were obtained in 750°C hydrogen reduction. The inner and outer diameters of VA-CNTs decreased with decreasing catalyst area ratio at 750°C hydrogen reduction and tended to increase at 500°C hydrogen reduction. The morphology of the catalyst nanoparticles after CVD was observed to change significantly depending on the hydrogen reduction temperature and catalyst area ratio. These observations indicate that the state of the catalyst nanoparticles immediately before the CNT growth process greatly affects the physical properties of the CNTs.
Takumi KOBAYASHI Masahiro MINAGAWA Akira BABA Keizo KATO Kazunari SHINBO
Improvement of the on/off ratio in organic field-effect transistors through the use of pentacene and molybdenum trioxide (MoO3) layers was attempted via the preparation of a discontinuous MoO3 layer using a mesh mask. We prepared three types of devices. Device A had a conventional top-contact structure with an n-type Si wafer and a 200-nm-thick SiO2 film onto which we deposited a 70-nm-thick pentacene film and a 30-nm-thick layer of Au top electrodes. Devices B and C had a similar structure to device A but received a continuous and a discontinuous MoO3 layer, respectively. The off current in Device B was remarkably high; in contrast, the off current in Device C was reduced and dependent on the separation of the MoO3 layer. It was deduced that the high resistance of the area without MoO3 contributed to the reduced off current.
Tatsuya KATO Yusuke ICHINO Tatsuo MORI Yoshiyuki SEIKE
In this report, solar cell characteristics were evaluated by doping the active layer CH3NH3PbI3 (MAPbI3) with 3.0 vol% and 6.0 vol% of potassium ion (KI) in an inverse-structured perovskite solar cells (PSCs). The Tauc plots of the absorbance characteristics and the ionization potential characteristics show that the top end of the valence band shifted by 0.21eV in the shallow direction from -5.34eV to -5.13eV, and the energy band gap decreased from 1.530eV to 1.525eV. Also, the XRD measurements show that the lattice constant decreased from 8.96Å to 8.93Å when KI was doped. The decrease in the lattice constant indicates that a part of the A site is replaced from methylammonium ion (MAI) to KI. In the J-V characteristics of the solar cell, the mean value of Jsc improved from 7.0mA/cm2 without KI to 8.8mA/cm2 with 3.0 vol% of KI doped and to 10.2mA/cm2 with 6.0 vol% of KI doped. As a result, the mean value of power-conversion efficiency (PCE) without KI was 3.5%, but the mean value of PCE improved to 5.2% with 3.0 vol% of KI doped and to 4.5% with 6.0 vol% of KI doped. Thus, it has shown that it is effective to dope KI to MAIPBI3, which serves as the active layer, even in the inverse-structured PSCs.
Yukihiro TOMINARI Toshiki YAMADA Takahiro KAJI Akira OTOMO
We investigated the photochemical stability of an electro-optic (EO) polymer under laser irradiation at 1310nm to reveal photodegradation mechanisms. It was found that one-photon absorption excitation assisted with the thermal energy at the temperature is involved in the photodegradation process, in contrast to our previous studies at a wavelength of 1550nm where two-photon absorption excitation is involved in the photodegradation process. Thus, both the excitation wavelength and the thermal energy strongly affect to the degradation mechanism. In any cases, the photodegradation of EO polymers is mainly related to the generation of exited singlet oxygen.
An electroactive supercoiled polymer artificial muscle, which is made from a conductive sewing thread using self-coiling caused by inserting a twist with a hanged appropriate weight, is 1/4-1/3 of the thread in length. Therefore, it is necessary to move the weight vertically about two or three times as long as the desired electroactive supercoiled polymer artificial muscle, resulting in a large vertical dimension of the fabrication equipment. This study has attempted to solve this problem by using constant-load springs that enable horizontal table-top fabrication equipment. It has been also demonstrated that inserting a twist into the bundled threads results in a strong electroactive supercoiled polymer artificial muscle.
Weisong LIAO Akira KAINO Tomoaki MASHIKO Sou KUROMASA Masatoshi SAKAI Kazuhiro KUDO
We observed dynamical carrier motion in an OLED device under an external reverse bias application using ExTDR measurement. The rectangular wave pulses were used in our ExTDR to observe the transient impedance of the OLED sample. The falling edge of the transmission waveform reflects the transient impedance after applying pulse voltage during the pulse width. The observed pulse width variation at the falling edge waveform indicates that the frontline of the hole distribution in the hole transport layer was forced to move backward to the ITO electrode.
Eiji ITOH Taisuke SEKINO Masato KATO
We have developed multilayered polymer-based inverted organic light emitting diodes (iOLED) using transfer-printing and push-coating techniques. We obtained the higher efficiency and lower operation voltage with push-coated blue light emitting polymer and hole transporting polymer than the devices with spin-coated film. The β-phase obtained for blue emitting layer is attributable to the improved performance of relatively efficient bule and white iOLEDs with an external quantum efficiency (EQE) of above 2%.
Lead bromide-based perovskite organic-inorganic quantum-well films incorporated polycyclic aromatic chromophores into the organic layer (in other words, hybrid quantum-wells combined lead bromide semiconductor and organic semiconductors) were prepared by use of the spin-coating technique from the DMF solution in which PbBr2 and alkyl ammonium bromides which were linked polycyclic aromatics, pyrene, phenanthrene, and anthracene. When the pyrene-linked methyl ammonium bromide, which has a relatively small molecular cross-section with regard to the inorganic semiconductor plane, was employed, a lead bromide-based perovskite structure was successfully formed in the spin-coated films. When the phenanthrene-linked and anthracene-linked ammonium bromides, whose chromophore have large molecular cross-sections, were employed, lead bromide-based perovskite structures were not formed. However, the introduction of longer alkyl chains into the aromatics-linked ammonium bromides made it possible to form the perovskite structure.
Satomitsu IMAI Kazuki CHIDAISYO Kosuke YASUDA
Incorporating a tool for administering medication, such as a syringe, is required in microneedles (MNs) for medical use. This renders it easier for non-medical personnel to administer medication. Because it is difficult to fabricate a hollow MN, we fabricated a capillary groove on an MN and its substrate to enable the administration of a higher dosage. MN grooving is difficult to accomplish via the conventional injection molding method used for polylactic acid. Therefore, biodegradable polyacid anhydride was selected as the material for the MN. Because polyacid anhydride is a low-viscosity liquid at room temperature, an MN can be grooved using a processing method similar to vacuum casting. This study investigated the performance of the capillary force of the MN and the optimum shape and size of the MN by a puncture test.
We have developed and evaluated a prototype micro-pump for a new form of medication that is driven by a chemical reaction. The chemical reaction between citric acid and sodium bicarbonate produces carbon dioxide, the pressure of which pushes the medication out. This micropump is smaller in size than conventional diaphragm-type micropumps and is suitable for swallowing.
Satomitsu IMAI Atsuya YAMAKAWA
An enzymatic biofuel cell (BFC) that uses lactic acid in human sweat as fuel to generate electricity is an attractive power source for wearable devices. A BFC capable of generating electricity with human sweat has been developed. It comprised a flexible tattoo seal type battery with silver oxide vapor deposited on a flexible material and conductive carbon nanotubes printed on it. The anode and cathode in this battery were arranged in a plane (planar type). This work proposes a thin laminated enzymatic BFC by inserting a cellulose nanofiber (CNF) sheet between two electrodes to absorb human sweat (stack-type). Optimization of the anode and changing the arrangement of electrodes from planar to stack type improved the output and battery life. The stack type is 43.20μW / cm2 at 180mV, which is 1.25 times the maximum power density of the planar type.
Conventional enzymatic biofuel cells (EBFCs) use glucose solution or glucose from human body. It is desirable to get glucose from a substance containing glucose because the glucose concentration can be kept at the optimum level. This work developed a biofuel cell that generates electricity from cellulose, which is the main components of plants, by using decomposing enzyme of cellulase. Cellulose nanofiber (CNF) was chosen for the ease of decomposability. It was confirmed by the cyclic voltammetry method that cellulase was effective against CNF. The maximum output of the optimized proposed method was 38.7 μW/cm2, which was 85% of the output by using the glucose solution at the optimized concentration.
Ryo MATSUOKA Tatsuki OGINO Satomitsu IMAI
An enzymatic biofuel cell (EBFC) is a device that uses an enzyme as a catalyst to convert chemical energy into electrical energy by a redox reaction to generate electricity. EBFC has the advantage that it can operate under mild conditions (normal temperature, normal pressure, and near neutral pH) and can use various energy sources such as sugar and alcohol. Hoshi et al. reported EBFC of glucose fuel using graphene-coated carbon fiber cloth (GCFC) with a large specific surface area. However, it was considered that GOD was affected by dissolved oxygen in the fuel and generated hydrogen peroxide, which hindered the reaction. In order to further increase the output, it was necessary to improve the performance of the anode with a novel enzyme that is less affected by oxygen and generates electricity from glucose. Therefore, we focused on FAD glucose dehydrogenase (FAD-GDH). It can generate electricity with glucose fuel by using it as a catalyst like GOD. Characteristic is that it is resistant to impurities such as maltose and galactose and is not easily affected by oxygen. It was thought that this would alleviate the concern about hydrogen peroxide and improve the output.
Studies on intrinsic Josephson junctions (IJJs) of cuprate superconductors are reviewed. A system consisting of a few IJJs provides phenomena to test the Josephson phase dynamics and its interaction between adjacent IJJs within a nanometer scale, which is unique to cuprate superconductors. Quasiparticle density of states, which provides direct information on the Cooper-pair formation, is also revealed in the system. In contrast, Josephson plasma emission, which is an electromagnetic wave radiation in the sub-terahertz frequency range from an IJJ stack, arises from the synchronous phase dynamics of hundreds of IJJs coupled globally. This review summarizes a wide range of physical phenomena in IJJ systems having capacitive and inductive couplings with different nanometer and micrometer length scales, respectively.
Takanari KASHIWAGI Genki KUWANO Shungo NAKAGAWA Mayu NAKAYAMA Jeonghyuk KIM Kanae NAGAYAMA Takuya YUHARA Takuya YAMAGUCHI Yuma SAITO Shohei SUZUKI Shotaro YAMADA Ryuta KIKUCHI Manabu TSUJIMOTO Hidetoshi MINAMI Kazuo KADOWAKI
Our group has developed terahertz(THz)-waves emitting devices utilizing single crystals of high temperature superconductor Bi2Sr2CaCu2O8+δ (Bi2212). The working principle of the device is based on the AC Josephson effect which is originated in the intrinsic Josephson junctions (IJJs) constructed in Bi2212 single crystals. In principle, based on the superconducting gap of the compound and the AC Josephson effect, the emission frequency range from 0.1 to 15 THz can be generated by simply adjusting bias voltages to the IJJs. In order to improve the device performances, we have performed continuous improvement to the device structures. In this paper, we present our recent approaches to high performance Bi2212 THz-waves emitters. Firstly, approaches to the reduction of self Joule heating of the devices is described. In virtue of improved device structures using Bi2212 crystal chips, the device characteristics, such as the radiation frequency and the output power, become better than previous structures. Secondly, developments of THz-waves emitting devices using IJJs-mesas coupled with external structures are explained. The results clearly indicate that the external structures are very useful not only to obtain desired radiation frequencies higher than 1 THz but also to control radiation frequency characteristics. Finally, approaches to further understanding of the spontaneous synchronization of IJJs is presented. The device characteristics obtained through the approaches would play important roles in future developments of THz-waves emitting devices by use of Bi2212 single crystals.
Kensuke NAKAJIMA Hironobu YAMADA Mihoko TAKEDA
Direct-current superconducting quantum interference device (dc-SQUID) based on intrinsic Josephson junction (IJJ) has been fabricated using Bi2Sr2CaCu2O8+δ (Bi-2212) films grown on MgO substrates with surface steps. The superconducting loop parallel to the film surface across the step edge contains two IJJ stacks along the edge. The number of crystallographically stacked IJJ for each SQUIDs were 40, 18 and 3. Those IJJ SQUIDs except for one with 40 stacked IJJs revealed clear periodic modulation of the critical current for the flux quanta through the loops. It is anticipated that phase locking of IJJ has an effect on the modulation depth of the IJJ dc-SQUID.
Intrinsic Josephson junctions (IJJs) in the high-Tc cuprate superconductors have several fascinating properties, which are superior to the usual Josephson junctions obtained from conventional superconductors with low Tc, as follows; (1) a very thin thickness of the superconducting layers, (2) a strong interaction between junctions since neighboring junctions are closely connected in an atomic scale, (3) a clean interface between the superconducting and insulating layers, realized in a single crystal with few disorders. These unique properties of IJJs can enlarge the applicable areas of the superconducting qubits, not only the increase of qubit-operation temperature but the novel application of qubits including the macroscopic quantum states with internal degree of freedom. I present a comprehensive review of the phase dynamics in current-biased IJJs and argue the challenges of superconducting qubits utilizing IJJs.
Yuetsu KODAMA Masaaki KONDO Mitsuhisa SATO
The supercomputer, “Fugaku”, which ranked number one in multiple supercomputing lists, including the Top500 in June 2020, has various power control features, such as (1) an eco mode that utilizes only one of two floating-point pipelines while decreasing the power supply to the chip; (2) a boost mode that increases clock frequency; and (3) a core retention feature that turns unused cores to the low-power state. By orchestrating these power-performance features while considering the characteristics of running applications, we can potentially gain even better system-level energy efficiency. In this paper, we report on the performance and power consumption of Fugaku using SPEC HPC benchmarks. Consequently, we confirmed that it is possible to reduce the energy by about 17% while improving the performance by about 2% from the normal mode by combining boost mode and eco mode.
Ken NAKAMURA Yuya OMORI Daisuke KOBAYASHI Koyo NITTA Kimikazu SANO Masayuki SATO Hiroe IWASAKI Hiroaki KOBAYASHI
This paper proposes an efficient reference image sharing method for the image-division parallel video encoding architecture. This method efficiently reduces the amount of data transfer by using pre-transfer with area prediction and on-demand transfer with a transfer management table. Experimental results show that the data transfer can be reduced to 19.8-35.3% of the conventional method on average without major degradation of coding performance. This makes it possible to reduce the required bandwidth of the inter-chip transfer interface by saving the amount of data transfer.
Yasuhiro MOCHIDA Daisuke SHIRAI Koichi TAKASUGI
The demand for low-latency transmission of large-capacity video, such as 4K and 8K, is increasing for various applications such as live-broadcast program production, sports viewing, and medical care. In the broadcast industry, low-latency video transmission is required in remote production, an emerging workflow for outside broadcasting. For ideal remote production, long-distance transmission of uncompressed 8K60p video signals, ultra-low latency less than 16.7 ms, and PTP synchronization through network are required; however, no existing video-transmission system fully satisfy these requirements. We focused on optical transport technologies capable of long-distance and large-capacity communication, which were previously used only in telecommunication-carrier networks. To fully utilize optical transport technologies, we propose the first-ever video-transmission system architecture capable of sending and receiving uncompressed 8K video directly through large-capacity optical paths. A transmission timing control in seamless protection switching is also proposed to improve the tolerance to network impairment. As a means of implementation, we focused on whitebox transponder, an emerging type of optical transponder with a disaggregation configuration. The disaggregation configuration enables flexible configuration changes, additional implementations, and cost reduction by separating various functions of optical transponders and controlling them with a standardized interface. We implemented the ultra-low-latency video-transmission system utilizing whitebox transponder Galileo. We developed a hardware plug-in unit for video transmission (VideoPIU), and software to control the VideoPIU. In the video-transmission experiments with 120-km optical fiber, we confirmed that it was capable of transmitting uncompressed 8K60p video stably in 1.3 ms latency and highly accurate PTP synchronization through the optical network, which was required in the ideal remote production. In addition, the application to immersive sports viewing is also presented. Consequently, excellent potential to support the unprecedented applications is demonstrated.
Kaoru MASADA Ryohei NAKAYAMA Makoto IKEDA
BLS signature is an elliptic curve cryptography with an attractive feature that signatures can be aggregated and shortened. We have designed two ASIC architectures for hashing to the elliptic curve and pairing to minimize the latency. Also, the designs are optimized for BLS12-381, a relatively new and safe curve.
Koichi HIRAYAMA Yoshiyuki YANAGIMOTO Jun-ichiro SUGISAKA Takashi YASUI
In a free-space method using a pair of horn antennas with dielectric lenses, we demonstrated that the permittivity of a sample can be estimated with good accuracy by equalizing a measured transmission coefficient of a sample to a transmission coefficient for a Gaussian beam, which is approximately equal to the transmission coefficient for a plane wave multiplied by a term that changes the phase. In this permittivity estimation method, because the spot size at the beam waist in a Gaussian beam needs to be determined, we proposed an estimation method of the spot size by employing the measurement of the Line in Thru-Reflect-Line calibration; thus, no additional measurement is required. The permittivity estimation method was investigated for the E-band (60-90 GHz), and it was demonstrated that the relative permittivity of air with a thickness of 2mm and a sample with the relative permittivity of 2.05 and a thickness of 1mm is estimated with errors less than ±0.5% and ±0.2%, respectively. Moreover, in measuring a sample without displacing the receiving horn antenna to avoid the error in measurement, we derived an expression of the permittivity estimation for S parameters measured using a vector network analyzer, and demonstrated that the measurement of a sample without antenna displacement is valid.