The search functionality is under construction.

IEICE TRANSACTIONS on Electronics

  • Impact Factor

    0.48

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.3

Advance publication (published online immediately after acceptance)

Volume E87-C No.2  (Publication Date:2004/02/01)

    Special Section on Recent Progress of Organic Molecular Electronics
  • FOREWORD

    Mitsumasa IWAMOTO  Mitsuyoshi ONODA  

     
    FOREWORD

      Page(s):
    127-127
  • Anisotropic Bending Machine Using Conducting Polypyrrole

    Mitsuyoshi ONODA  Kazuya TADA  

     
    PAPER-Nano-interface Controlled Electronic Devices

      Page(s):
    128-135

    Recent new technologies of electro-mechanical conversion devices have been reviewed. Especially, the electrochemical properties of anisotropic actuators using polypyrrole have been reviewed in detailed and the realization of the bimorph (or bending beam) structure without artificial adhesive agent is introduced.

  • Actuator Using Electrostriction Effect of Fullerenol-Doped Polyurethane Elastomer (PUE) Films

    Jun KYOKANE  Kenji TSUJIMOTO  Yuki YANAGISAWA  Tsutomu UEDA  Masumi FUKUMA  

     
    PAPER-Nano-interface Controlled Electronic Devices

      Page(s):
    136-141

    Polyurethane elastomer (PUE) films similar to polymer gel materials have been found to exhibit the electrostriction effect. We proposed the application their to a moving device such as an actuator without ionic solvent using the electrostriction effect of PUE. The actuators are of monomorph type fabricated by PUE film and metal electrodes evaporated at different thicknesses on the film surface. Because these actuators work at high voltage more than 1 KV, we controlled the molecular structure of the films by doping C60 derivatives (fullerenol) into PUE so that the actuators could operate under a low voltage. In order to clear the bending mechanism of actuators, we measured the space charge of PUE films using the pulsed electroacoustic method.

  • A Thin-Film Glucose Biosensor Based on Hexamethyldisiloxane Plasma-Polymerized Film: Influence of Its Film Thickness on the Platinum Electrode

    Yoshihiro KASE  Hitoshi MUGURUMA  Atsunori HIRATSUKA  Isao KARUBE  

     
    PAPER-Nano-interface Controlled Electronic Devices

      Page(s):
    142-147

    An amperometric thin-film glucose biosensor based on a plasma-polymerized film using hexamethyldisiloxane as the monomer is presented. The plasma-polymerized film, achieved in plasma in the vapor phase, offers a new alternative for use in the design of the electrode-enzyme interface of biosensors. The film shows promise of high sensor performance; namely, rapid sensor response, low noise, a wide dynamic range, reproducibility, and reduction in the effects of interfering materials such as ascorbic acid. In this study, we examined the usefulness of the hexamethyldisiloxane plasma-polymerized film and investigated how the thickness of the plasma-polymerized film on a platinum electrode affected sensor characteristics: the selectivity for hydrogen peroxide versus interfering agents, the sensor response due to enzymatic reaction, and oxygen depletion.

  • Contact Resistances at Nano Interfaces of Conducting Polymers, Poly(3-alkylthiophene) and Metals of Al and Au

    Keiichi KANETO  Wataru TAKASHIMA  

     
    PAPER-Nano-interfacial Properties

      Page(s):
    148-151

    Electrical properties of contacts between head-tail coupled poly(3-hexylthiophene), PHT and Al (and Au) in planer type and sandwich type diodes of Al/PHT/Au have been studied. The contact resistances are directly evaluated by probing the potential profile of PHT between the metal electrodes using micromanipulators installed in scanning electron microscope. In the potential profile of planer type diode, a large potential cliff is observed at Al/PHT interface and some appreciable potential step is also found at PHT/Au interface. The contact resistance at the Al/PHT interface deduced from the potential profile shows the bias and its polarity dependence, indicating the existing of the Schottky like junction. At forward bias, it is found that the residual resistance at Al/PHT interface limits the diode performance. The residual resistance is supposed to be insulating layer of Al oxide. At larger reversed bias, the contact resistance at Al/PHT decreased abruptly due to the Zener breakdown. The potential profile of sandwich type diode is similar to that of planer type diode. It is found that even the PHT/Au contact shows the ohmic behavior, the contact resistance is significant as to limit the maximum current of the cells.

  • Doping Effects on the Series Resistance of Conducting Polymers Diode

    Masayuki WADA  Kazuya TADA  Mitsuyoshi ONODA  

     
    PAPER-Nano-interfacial Properties

      Page(s):
    152-157

    A device structure for polymer Schottky diode, which has the glass chimney as a dopant reservoir enabling the reduction of series resistance without cathode corrosion, has been proposed. Doping with the acetonitrile solution of FeCl3 in the device resulted in the increase in the forward-bias current by one order of magnitude without notable increase in reverse-bias current, suggesting that the doping reduced the series resistance. It is found that the penetration speed depends on the solvents. Short time doping with the nitromethane solution of FeCl3 resulted in the increase by three orders of magnitude. However, doping for a long period yielded the considerable increase in the reverse-bias current due to the complete penetration of dopatn solution. When the upper opening of glass chimney of device is left opened and the sample after doping stored in air, the forward-bias current of the device reduced rapidly due to the undoping and/or degradation of polymer. It is possible to protect the degradation of device characteristics after doping, by sealing the chimney and storing the device in vacuum.

  • Allosteric Mechanism of Molecular Structural Changes in Opening Transition of the Neuro Chemical Channel on the Excitable Cellular Membrane

    Hirohumi HIRAYAMA  

     
    PAPER-Organic-neuro Systems

      Page(s):
    158-173

    We show a geometric method to compute the Van der Waals factor 1/r7 between the assemblies of amino acid molecules of the subunits of acetyl choline (abbreviated by Ach: a kind of neuro chemical transmitter) sensitive channel on the post synaptic membrane of the neural system. We induced a analytical geometric formula for the distances between helically arranged ten assemblies of the point amino acid molecules on two interacting membrane perforating poly peptides, M2 helices during channel opening deformation. Detailed geometric parameters have been utilized from reported biophysical measurements. The computed Van der Waals factor decreased rapidly as the slope of the first M2 helix along the central axis of the channel pore has increased. The Van der Waals factor also decreased by an increase in rising angle of the helically arranged amino acids on the M2 helices. The Van der Waals factor increased significantly as the first M2 helix has rotated around the central axis of the channel pore to take an opening position. We discussed the time dependent molecular structural changes of the Ach sensitive channel opening in conjunction with the Allosteric properties of the bio molecules. The molecular mechanism of Ach sensitive channel opening in terms of the Allosteric property may derive from the characteristic helical constitutional nature of the membrane perforating part (M2 helix) of the subunits of the channel molecule.

  • Control of Linear Pattern of Conducting Polymer Prepared Electrochemically

    Masaharu FUJII  Haruo IHORI  Kiyomitsu ARII  

     
    PAPER-Organic-neuro Systems

      Page(s):
    174-178

    Two-dimensional (2D) patterns of a conducting polymer have been prepared electrochemically. The patterns depend on the conditions of electrochemical polymerization. Concerning the polymerization reaction and the growth process of conducting polymers, it is found that the growth rate and solution flow during the generation of the 2D pattern are important factors for controlling the 2D pattern. The linear pattern and the simple branching pattern were successfully fabricated by optimizing the deposition conditions. The successful fabrication of the branching pattern indicates the processability of linear conducting polymers for network formation.

  • AFM/STM Observation of C-Au-S Conductive Granular Molecule by Co-operation Process of Plasma CVD and Sputtering

    Mikinori SUZUKI  Md. Abul KASHEM  Shinzo MORITA  

     
    PAPER-Organic-neuro Systems

      Page(s):
    179-182

    AFM/STM observations were performed on sub nm thick C-Au-S film by co-operation process of plasma CVD and sputtering with using CH4, SF6 and Ar mixture gas and Au plate discharge electrode. From the refractive index values, the conductive granular molecules with a size of 0.4-0.6 nm were expected to exist in the film. For the film at thickness similar to the molecular size, Ra (arithmetic mean departures of roughness profile from the mean line) values were measured to be 0.712/6.10 nm by AFM/STM measurement, respectively. The one order large STM Ra value compared to the AFM Ra value suggests that the film contains conductive granular molecules.

  • Investigation of Single Monolayer Formation of the Evaporated Liquid Crystalline Molecules by the Surface Potential Measurement

    Takaaki MANAKA  Hajime HIGA  Dai NAKAMURA  Dai TAGUCHI  Mitsumasa IWAMOTO  

     
    LETTER-Nano-interface Controlled Electronic Devices

      Page(s):
    183-184

    The formation of single monolayer of liquid crystalline molecules, 4-n-pentyl-4-cyanobiphenyl (5CB), deposited by the evaporation method in the air, was confirmed with the surface potential measurement. The surface potential increased with the time of evaporation, and the 3- or 4-minute evaporation at a source temperature of 110 gave the saturated potential, indicating the formation of single monolayer. Single monolayer formation was also supported by the comparison of the UV-visible absorption for evaporated film with LB monolayer. Positive potentials were built at the surface, indicating that CN group faces the substrate.

  • Optical Fiber Bio-Sensor Using Adsorption LB Films

    Kazuhiro KUDO  

     
    LETTER-Nano-interface Controlled Electronic Devices

      Page(s):
    185-187

    An optical fiber biosensor using adsorption LB films has been investigated for the application to the glucose detection in blood. The adsorption LB film containing glucose oxidase (GOD: the enzyme in human body) was deposited on the core portion of optical fiber and the variation of absorption spectra due to the reactions of GOD, glucose, and hemoglobin was measured. The relatively high response time of 60 s and glucose sensitivity as low as 20 mg/dl were obtained. The results demonstrate that the optical fiber bio-sensor using adsorption LB film can be used as a glucose sensor.

  • Special Section on Recent Progress in Oxide Thin Films by Sputtering
  • FOREWORD

    Yoichi HOSHI  

     
    FOREWORD

      Page(s):
    188-188
  • Magnetic and Electric Properties of Fe3O4 Thin Films Sputtered on Metallic Underlayer

    Fei QIN  Yukio NOZAKI  Kimihide MATSUYAMA  

     
    PAPER

      Page(s):
    189-192

    High-quality Fe3O4 thin films have been fabricated onto metallic underlayers of Cr/Cu and Al by rf-magnetron sputtering at low substrate temperatures (<573 K). The measured saturation magnetizations Ms are 462 emu/cm3 for Al (50 nm)/Fe3O4 (200 nm) and 422 emu/cm3 for Cr (45 nm)/Cu (300 nm)/Fe3O4 (200 nm), which are markedly enhanced compared with that for the reference sample deposited directly on a glass substrate, and practically comparable to the bulk value of 477 emu/cm3. Highly conductive transport with an order-disorder change of the Verwey transition was observed in the current-perpendicular-to-plane geometry. The order of decrease in coercive field was achieved by exchange coupling with an overlaid NiFe layer.

  • Preparation of Cuprous Oxide (Cu2O) Thin Films by Reactive DC Magnetron Sputtering

    Kiichi KAMIMURA  Haruki SANO  Katsuya ABE  Rinpei HAYASHIBE  Tomohiko YAMAKAMI  Masato NAKAO  Yoshiharu ONUMA  

     
    PAPER

      Page(s):
    193-196

    Cuprous Oxide Cu2O films were deposited by reactive DC magnetron sputtering. The substrate temperature and oxygen partial pressure were found to be important parameters in controlling the film property. The single-phase Cu2O films were successfully obtained by carefully controlling the oxygen partial pressure with suppression of CuO formation. The (100)-oriented epitaxial Cu2O film was grown on the (102) surface of single-crystal Al2O3. The fundamental absorption edge of the Cu2O film was determined to be about 2 eV by photo-transmission measurement. The resistivity of the film was of the order of 105 Ωcm.

  • Superconducting Properties of EuBa2Cu3O7 Thin Films Deposited on R-Plane Sapphires with CeO2Sm2O3 Buffer Layers Using Magnetron Sputtering

    Osamu MICHIKAMI  Yasuyuki OTA  Shinji KIKUCHI  

     
    PAPER

      Page(s):
    197-201

    In order to improve the critical current density (Jc) of c-axis-oriented EuBa2Cu3O7 (c-EBCO) thin films deposited on R-plane sapphires (R-Al2O3) with a CeO2 buffer layer, insertion of an Sm2O3 buffer layer and optimization of its deposition condition were attempted. The effects of substrate temperature and film thickness of an Sm2O3 buffer layer on the orientation, crystallinity, surface morphology and superconducting properties of EBCO thin films were examined. As a result, EBCO thin films with Jc = 5.7 MA/cm2 at 77.3 K were obtained on a sapphire with a CeO2(80 )Sm2O3(200 ) buffer layer. Epitaxial relations of sputter-deposited films were clarified.

  • Sputtering Conditions and Properties of In-Plane-Aligned Y-Ba-Cu-O Films for Devices Application

    Lan ZHANG  Masataka MORIYA  Tadayuki KOBAYASHI  Masashi MUKAIDA  Toshinari GOTO  

     
    PAPER

      Page(s):
    202-205

    In-plane-aligned a-axis-oriented YBa2Cu3O7-δ (YBCO) thin films are attractive for the formation of planar intrinsic Josephson devices. In this study, these films were deposited by dc sputtering on LaSrGaO4 (LSGO) (100) substrates and the dependence of the characteristics on the deposition conditions was investigated. In-plane-aligned a-axis-oriented YBCO thin films were successfully grown in the substrate temperature range of 555-615. With the temperature gradient method, it was seen that the critical temperature of the film increased to 81 K. The current-voltage characteristic along the c-axis exhibited clear multibranch structures. These results indicate that ion-cleaning of the substrate surface broadens the growth temperature range of these films and planar intrinsic Josephson devices can be fabricated from these films.

  • Fabrication of La-Doped YBCO and SrTiO3-Buffered LSAT Thin Films for Ramp-Edge Josephson Junctions on Superconducting Ground Plane

    Seiji ADACHI  Hironori WAKANA  Yoshihiro ISHIMARU  Masahiro HORIBE  Yoshinobu TARUTANI  Keiichi TANABE  

     
    PAPER

      Page(s):
    206-211

    The deposition conditions of Y0.9Ba1.9La0.2Cu3Oy (La-YBCO) and (LaAlO3)0.3-(SrAl0.5Ta0.5O3)0.7 (LSAT) thin films were studied with the aim of fabricating ramp-edge Josephson junctions on a superconducting ground plane. These films were deposited by a magnetron sputtering method and utilized as a base electrode and an insulating layer under the electrode, respectively. YBa2Cu3Oy thick films grown by liquid phase epitaxy (LPE-YBCO) were used for a ground plane. Insertion of a SrTiO3 buffer layer between LSAT and LPE-YBCO significantly improved the flatness of the film surface. La-YBCO films with a flat surface and Tc (zero) of 87K were reproducibly obtained by DC sputtering. We have fabricated ramp-edge Josephson junctions using these films. Resistively and capacitively shunted junction (RCSJ)-like characteristics were observed in them. An Ic spread of 10.2% (at 4.2K, average Ic = 0.5 mA) was obtained for a 1000-junction series-array.

  • Low Temperature Deposition of Indium Tin Oxide Thin Films by Low Voltage Sputtering in Various Rare Gases

    Yoichi HOSHI  Hidehiko SHIMIZU  

     
    PAPER

      Page(s):
    212-217

    Indium tin oxide (ITO) films were deposited at a temperature below 50 by a low-voltage sputtering system. The sputtering voltage was fixed at 100 V and Ar, Kr, and Xe were used as the sputtering gases. Compared with the sputtering in Ar gas, the sputtering in Kr or Xe gas caused a significant suppression of crystallization of the deposited film and resulted in the formation of amorphous films. These films had much lower resistivities than the films deposited using Ar gas, since the Hall mobility of the films had a larger value. Typical Hall mobility and carrier density are 50 cm2/Vsec, and 51020 cm-3, respectively. This improvement was attributable to the reduction of high-energy particle bombardment to the film surface in the sputtering. These films are stable at a temperature below 150, and crystallization occurs at a temperature above 150.

  • Feasibility of Ultra-Thin Films for Gate Insulator by Limited Reaction Sputtering Process

    Kimihiro SASAKI  Kentaro KAWAI  Tatsuhiro HASU  Makoto YABUUCHI  Tomonobu HATA  

     
    PAPER

      Page(s):
    218-222

    A new sputtering technique named "itshape limited reaction sputtering" is proposed and the feasibility toward an ultra-thin gate insulator is investigated. 5-10 nm thick ZrO2 films were prepared on Si(100) substrates and analyzed by XPS, HR-RBS and RHEED. Significant Zr diffusion into the Si substrate and interface oxidation were not observed. An optimum film was obtained at growth temperature of 300, oxygen flow rate of 4.2% and 500-10 sec RTA. The equivalent oxide thickness of 2 nm was realized with leakage current of 10-7 A/cm2 at 1.5 MV/cm.

  • Crystallization and Conductivity of ReO3 Thin Films Prepared by 90Off-Axis RF Magnetron Sputtering Method

    Nobuyuki IWATA  Kumiko FUKAI  Hiroshi YAMAMOTO  

     
    PAPER

      Page(s):
    223-226

    We investigated growth conditions of the ReO3 thin films, as a first step of establishment of artificial superconducting multi-layer with the infinite layer cuprate and ReO3. The layers of ReO3 were expected to work as a charge reservoir block. The films were deposited from a Re metal target by off-axis reactive sputtering. Conductive and preferentially (100) oriented ReO3 thin films were obtained by in-situ post-annealing. The lowest resistivity was 4.4 10-5 ohmcm at room temperature.

  • High Rate Sputter-Deposition of TiO2 Films Using Oxide Target

    Yoichi HOSHI  Tomoki TAKAHASHI  

     
    PAPER

      Page(s):
    227-231

    The sputter-deposition process of TiO2 thin films was investigated. When an oxide target is used, high-rate deposition above 57 nm/min can be realized by sputtering under a condition of low oxygen gas content. Under this sputtering condition, a Ti rich surface layer is formed by selective sputtering of oxygen atoms, and a large amount of Ti atoms are sputtered from this layer. The deposition rate, however, decreases steeply as the oxygen gas content increases. This decrease can be explained as follows. When a sufficient amount of oxygen gas is supplied into the chamber during sputtering, the oxygen atoms which are missing from the target surface by selective sputtering are filled up immediately. This leads to a very low deposition rate of the film, because only oxygen atoms are sputtered from the target. Therefore, the suppression of the incidence of oxygen gas to the target surface and a sufficient of oxygen supply to the substrate are necessary to realize the high-rate deposition of stoichiometric TiO2 films. From this point of view, using an oxide target instead of a metal target is useful for realizing a stable high-rate deposition of the film, since the amount of oxygen gas introduced in to the sputtering chamber can be reduced significantly. In addition, it was confirmed that pulse sputtering method is a useful technique for the deposition of TiO2 thin films. Meanwhile, low-voltage sputtering technique was difficult to use for the film deposition because of its low deposition rate.

  • High-Rate Deposition of Titanium Dioxide Films with Photocatalytic Activities by Gas Flow Sputtering

    Kiyoshi ISHII  Kazunari KUROKAWA  Sachio YOSHIHARA  

     
    PAPER

      Page(s):
    232-237

    Photocatalytic TiO2 films were prepared by reactive gas flow sputtering (GFS), which enables sputter-deposition at a high pressure of about 100 Pa. A pure Ti tube was used as the target, and the O2 gas was supplied in front of the substrate, resulting in a very stable discharge and a high deposition rate of 80 nm/min. The crystal structure and morphology of TiO2 films were found to strongly depend on the flow rate of O2 gas during sputtering. Polycrystalline films composed of rutile and anatase crystallites were deposited at a low O2 flow rate of less than 2 sccm when Ar flow rate was set at 300 sccm, and amorphous films were deposited at higher O2 flow rates. Polycrystalline films composed of very small crystallites showed high levels of photocatalytic activity, while amorphous films showed no activity.

  • Regular Section
  • A Logic-Cell-Embedded PLA (LCPLA): An Area-Efficient Dual-Rail Array Logic Architecture

    Hiroaki YAMAOKA  Hiroaki YOSHIDA  Makoto IKEDA  Kunihiro ASADA  

     
    PAPER-Integrated Electronics

      Page(s):
    238-245

    This paper describes an area-efficient dual-rail array logic architecture, a logic-cell-embedded PLA (LCPLA), which has 2-input logic cells in the structure. The 2-input logic cells composed of pass-transistors can realize any 2-input Boolean function and are embedded in a dual-rail PLA. The logic cells can be designed by connecting some local wires and do not require additional transistors over logic cells of the conventional dual-rail PLA. By using the logic cells, some classes of logic functions can be implemented efficiently, so that high-speed and low-power operations are also achieved. The advantages over the conventional PLAs and standard-cell-based designs were demonstrated by using benchmark circuits, and the LCPLA is shown to be effective to reduce the number of product terms. In a structure with a 64-bit input and a 1-bit output including 220 product terms, the LCPLA achieved an area reduction by 35% compared to the conventional high-speed dual-rail PLA, and the power-delay product was reduced by 74% and 46% compared to the conventional high-speed single-rail PLA and the conventional high-speed dual-rail PLA, respectively. A test chip of this configuration was fabricated using a 0.35-µm, 3-metal-layer CMOS technology, and was verified with a functional test using a logic tester and an electron-beam tester at frequencies of up to 100 MHz with a supply voltage of 3.3 V.

  • A Novel Vector Spatial Field Mapping Technique Using Electro-Optic Sampling

    Yoshiro MATSUO  Tetsuya KAWANISHI  Satoshi OIKAWA  Kaoru HIGUMA  Masayuki IZUTSU  

     
    LETTER-Lasers, Quantum Electronics

      Page(s):
    246-249

    We propose a simple and novel technique for mapping vector spatial fields using electro-optic (EO) sampling. Our technique utilizes a sandwich-like EO crystal in which a dielectric mirror is inserted into the EO crystal. Three-dimensional field measurements at several given heights above a two-dimensional RF resonant structure were successfully demonstrated. Field scanning at any height is possible if the sandwich-like EO crystal is appropriately constructed.

  • Highly Nonlinear Dispersion-Flattened Polarization-Maintaining Photonic Crystal Fiber in 1.55 µm Region

    Takashi YAMAMOTO  Hirokazu KUBOTA  Satoki KAWANISHI  Masatoshi TANAKA  Syun-ichiro YAMAGUCHI  

     
    LETTER-Optoelectronics

      Page(s):
    250-252

    We describe the first highly nonlinear dispersion-flattened polarization-maintaining photonic crystal fiber designed for nonlinear optics applications in the 1.55 µm region. The nonlinear coefficient of the fiber is 19 (W-1km-1), which is ten times that of dispersion shifted fiber. The chromatic dispersion and dispersion slope of the fiber at 1.55 µm are -0.23 ps/km/nm and 0.01 ps/km/nm2, respectively. We demonstrate the generation of a supercontinuum using the photonic crystal fiber. A symmetrical supercontinuum over 40 nm is obtained by injecting 1562 nm, 2.2 ps, and 40 GHz optical pulses into the 200 m-long photonic crystal fiber.