Baoquan ZHONG Zhiqun CHENG Minshi JIA Bingxin LI Kun WANG Zhenghao YANG Zheming ZHU
Kazuya TADA
Suguru KURATOMI Satoshi USUI Yoko TATEWAKI Hiroaki USUI
Yoshihiro NAKA Masahiko NISHIMOTO Mitsuhiro YOKOTA
Hiroki Hoshino Kentaro Kusama Takayuki Arai
Tsuneki YAMASAKI
Kengo SUGAHARA
Cuong Manh BUI Hiroshi SHIRAI
Hiroyuki DEGUCHI Masataka OHIRA Mikio TSUJI
Hiroto Tochigi Masakazu Nakatani Ken-ichi Aoshima Mayumi Kawana Yuta Yamaguchi Kenji Machida Nobuhiko Funabashi Hideo Fujikake
Yuki Imamura Daiki Fujii Yuki Enomoto Yuichi Ueno Yosei Shibata Munehiro Kimura
Keiya IMORI Junya SEKIKAWA
Naoki KANDA Junya SEKIKAWA
Yongzhe Wei Zhongyuan Zhou Zhicheng Xue Shunyu Yao Haichun Wang
Mio TANIGUCHI Akito IGUCHI Yasuhide TSUJI
Kouji SHIBATA Masaki KOBAYASHI
Zhi Earn TAN Kenjiro MATSUMOTO Masaya TAKAGI Hiromasa SAEKI Masaya TAMURA
Misato ONISHI Kazuhiro YAMAGUCHI Yuji SAKAMOTO
Koya TANIKAWA Shun FUJII Soma KOGURE Shuya TANAKA Shun TASAKA Koshiro WADA Satoki KAWANISHI Takasumi TANABE
Shotaro SUGITANI Ryuichi NAKAJIMA Keita YOSHIDA Jun FURUTA Kazutoshi KOBAYASHI
Ryosuke Ichikawa Takumi Watanabe Hiroki Takatsuka Shiro Suyama Hirotsugu Yamamoto
Chan-Liang Wu Chih-Wen Lu
Umer FAROOQ Masayuki MORI Koichi MAEZAWA
Ryo ITO Sumio SUGISAKI Toshiyuki KAWAHARAMURA Tokiyoshi MATSUDA Hidenori KAWANISHI Mutsumi KIMURA
Paul Cain
Arie SETIAWAN Shu SATO Naruto YONEMOTO Hitoshi NOHMI Hiroshi MURATA
Seiichiro Izawa
Hang Liu Fei Wu
Keiji GOTO Toru KAWANO Ryohei NAKAMURA
Takahiro SASAKI Yukihiro KAMIYA
Xiang XIONG Wen LI Xiaohua TAN Yusheng HU
Tohgo HOSODA Kazuyuki SAITO
Yihan ZHU Takashi OHSAWA
Shengbao YU Fanze MENG Yihan SHEN Yuzhu HAO Haigen ZHOU
Kiyoshi TAKAHASHI Osamu MIKAMI
Tetsuro KOBAYASHI Masamichi YAMANISHI
Hirokazu KUBOTA Masataka NAKAZAWA
Soliton transmission control has already proved to be an outstanding technique and enable a soliton to be transmit over one million kilometers. This technique is not only applicable to vast distances but also to shorter distances where the amplifier spacing is greater than that of conventional systems. A combination of time and frequency domain control eliminates the noise accumulation and timing jitter caused by soliton interaction and the Gordon-Haus effect, that are the main impediments to extending the transmission distance. In this paper we describe soliton control techniques applied over an astronomical transmission distance of 180,000,000 km, and to a terrestrial system with a large amplifier spacing of up to 100km. We also report the possibility of realizing a sub-tera bit/s soliton transmission system operating over more than 5,000 km in which the soliton self-frequency shift is controlled with the soliton control technique.
Masatoshi SUZUKI Noboru EDAGAWA Hidenori TAGA Hideaki TANAKA Shu YAMAMOTO Yukitoshi TAKAHASHI Shigeyuki AKIBA
Feasibility of 20 Gbit/s single channel transoceanic soliton transmission systems with a simple EDFA repeaters configuration has been studied. Both a simple and versatile soliton pulse generator and a polarization insensitive optical demultiplexer, which can provide a almost square shape optical gate with duration of full bit time period, have been proposed and demonstrated by using sinusoidally modulated electroabsorption modulators. The optical time-division multiplexing/demultiplexing scheme using the optical demultiplexer results in drastic improvement of bit error rate characteristics. We have experimentally confirmed that the use of alternating-amplitude solitons is an efficient way to mitigate not only soliton-soliton interaction but also Gordon-Haus timing jitter constraints in multi-ten Gbit/s soliton transmission. Timing jitter reduction using relatively wide band optical filter bas been investigated in 20 Gbit/s loop experiments and single-carrier, single-polarization 20 Gbit/s soliton data transmission over 11500 km with bit error rate of below 10-9 has been experimentally demonstrated, using the modulator-based soliton source, the optical demultiplexer, the alternation-amplitude solitons, and wide-band optical filters. Obtained 230 Tbit/skm transmission capacity shows the feasibility of 20 Gbit/s single channel soliton transoceanic systems using fully practical technologies.
Ichiro OGURA Kaori KURIHARA Shigeru KAWAI Mikihiro KAJITA Kenichi KASAHARA
We describe an application of InGaAs/AlGaAs VCSELs to multiple wavelength light source for optical interconnection. A flip-chip bonding technique is used to integrate the VCSELs lasing at different wavelengths. The integrated VCSELs of different wavelengths are individually grown and processed, so that one can optimize the device characteristics and the wavelength separation or distribution for multiple wavelength interconnection systems. A 9-wavelength VCSEL array with a wavelength separation of 5 nm has been successfully fabricated.
Tomoki SUGAWA Kenji KUROKAWA Hirokazu KUBOTA Masataka NAKAZAWA
The polarization dependence of femtosecond soliton-soliton interactions is investigated in detail. When the polarization direction of two solitons is orthogonal, the soliton interaction can be reduced in comparison to that for parallel polarization. The soliton self-frequency shift (SSFS) is still observed even in the orthogonal condition, but the quantity of the SSFS is much smaller than in the parallel condition. A stronger soliton interaction is observed between two solitons in an in-phase condition, than in an out-of-phase condition. The largest SSFS occurs in-phase with parallel polarization. The polarization dependence of femtosecond soliton interaction in a distributed erbium-doped fiber amplifier (DEDFA) is also investigated. It is shown that when the optical gain of the DEDFA is given adiabatically, the input pulse separation at which the first soliton occurs is less with orthogonal polarization. This is because the soliton pulse width is reduced due to the adiabatic soliton narrowing caused by the optical amplification.
Kazuya HAYATA Hiroyuki HIGAKI Masanori KOSHIBA
Ultrashort pulsed-beam propagation in a Kerr-type bulk medium is studied theoretically through classical and quantum field solutions of a higher-order nonlinear Schrödinger equation, which is valid for transversely localized femtosecond pulses in an anomalous dispersion regime. Quantum-mechanical stability analysis via a Hartree approximation to interacting bosons shows that within a certain range of a parameter the solitary wave could be stabilized even in the three-dimensional transverse space-time. This feature admits of an exotic route to multidimensional solitons.
George ISHIKAWA Motoyoshi SEKIYA Hiroshi ONAKA Terumi CHIKAMA Hiroshi NISHIMOTO
This paper proposes that a combination of pre-chirping and dispersion compensation is effective in suppressing the waveform distortion due to the self-phase modulation and the group-velocity dispersion in 10 Gb/s repeaterless transmission using 1.3-µm zero-dispersion single-mode fibers (SMF) operating at a wavelength of 1.55µm. The following results were obtained through simulation. 1) Setting the α-parameter of a LiNbO3 optical modulator negative (α
Koichi WAKITA Kenji SATO Isamu KOTAKA Yasuhiro KONDO Mitsuo YAMAMOTO
A new device consisting of an optical pulse generation section and pulse coding section monolithically integrated on a single-chip has been developed. The pulse generation section consists of a multiple quantum well (MQW) electroabsorption modulator integrated with an MQW DFB laser. The modulator operates at large-signal modulation and low voltage (from 2 to 3-V DC bias with a 3.2-V peak-to-peak RF signal). The second modulator is operated independently as a pulse encoder. An approximately transform-limited optical pulse train, whose full width at half maximum (FWHM) in the time domain is less than 17-ps and spectral FWHM is 28-GHz, is obtained with a repetition frequency of 10-GHz. Compressive strain is introduced in both InGaAsP quantum wells in order to obtain efficient device characteristics. These include a low threshold current (18-mA) for the laser, and low driving voltage (30-dB for 3-V swing) and high-speed operation (over 12-GHz for a 3-dB bandwidth) for the modulators. Demonstrations show that this new device generates short optical pulses encoded by a pseudo-random signal at a rate of 10 Gbit/s. This is the first time 10 Gbit/s modulation has been achieved with a multi-section electroabsorption modulator/DFB laser integrated light source. This monolithic device is expected to be applied to optical soliton transmitters.
Masayuki IZUTSU Takashi MIZUOCHI Tadasi SUETA
A filter-type coplanar parallel electrode with periodically loaded reactances is introduced to construct guided-wave light modulators of limited bandwidth. The device was built by using a Ti:LiNbO3 optical waveguide and was operated successfully at 633 nm. Measured 3 dB bandwidth was 1 GHz centered at 14.8 GHz. Required modulating power for 1 rad phase modulation was 67.6 mW.
Hirohisa YOKOTA Koichi KIMURA Sadao KURAZONO
For an application to the optical signal processing devices, we propose the optical X coupler which consists of two bending waveguides and a nonlinear dielectric region. To analyze this structure accurately we utilized the iterative finite difference beam propagation method (iterative FD-BPM). In this paper the formulation of the iterative FD-BPM for one wave and two waves cases are presented, respectively. We investigate following two cases. First, we consider the case that the light is launched into one of the input ports. We calculate the evolutions of the field amplitude and the transmission characteristics for the input power. Second, we consider the case that the signal light with the constant power is launched into one of the input ports and that the control light with the wavelength different from that of the signal light is launched into another input port. We calculate the evolutions of the field amplitude and the transmission characteristics of the signal light for the power of control light. As a result of the analysis, we show that all-optical switching operation is possible in the proposed structure.
Hironori TAKAHASHI Shin-ichiro AOSHIMA Kazuhiko WAKAMORI Isuke HIRANO Yutaka TSUCHIYA
While Electro-Optic (E-O) sampling has achived the electric signal measurement with advantages of noninvasive, noncontact and ultrafast time resolution, it is unsuitable for measuring long logic patterns in fast ICs under the functional test conditions. To overcome this problem, a real time E-O probing using a continuous wave (CW) diode laser and a fast photodetector has been developed. By adopting a ZnTe E-O probe having a half-wave voltage of 3.6 kV, shot noise limited measurement with a frequency bandwidth of 480 MHz has been achieved using a low noise diode laser (wavelength of 780 nm, output power of 30 mW), a pin photodiode, a wideband low noise amplifier, and a digital oscilloscope having 500 MHz bandwidth as a waveform analyzer. The minimum detectable voltage was 23 mV under 700 times integration. In this paper, discussion of the voltage sensitivity of real time E-O probing is included. Key parameters for attaining the highly sensitive real time E-O probing are the sensitivity of the E-O probe and noises of the probing light and detection system.
Taro ITATANI Tadashi NAKAGAWA Fumihisa KANO Kimihiro OHTA Yoshinobu SUGIYAMA
We measured the longitudinal electric field of the electrical pulses with a rise time less than 1 ps on a coplanar transmission line by electrooptic sampling. The longitudinal component is a sharp pulse and is only observed at the wavefront. The transverse component has no overshoot or undershoot. The mixing of longitudinal component to the transverse component is discussed for C3v crystals whose electrooptic coefficient is large. We developed the method to estimate the longitudinal and the transverse component of the electric field by the polarization control of a probe light without changing the probe configuration which affects sensitivity severely. The waveform and the rise time of the transverse electric field were eatimated, for the first time, by subtracting the influence of the longitudinal component.
Shigeru KAWAI Hisakazu KURITA Ichiro OGURA
Wavelength-division multiplexing (WDM) optical switching networks are one of most attractive technologies in optical interconnections. By combining with time-division multiplexing (TDM) and space-division multiplexing (SDM) technologies, remarkably high-throughput interconnections may be accomplished. In this paper, we propose WDM switching networks with time-division multiplexed optical signals by using free-space optics. We also propose novel WDM interconnections, including multiple-wavelength light-sources, optical fibers and wavelength-selectable detectors. We successfully confirmed basic principles for the WDM interconnections.
Kenji TORIZUKA Hideyuki TAKADA Kenzo MIYAZAKI
Self-modelocking of Ti:sapphire laser has obtained with less than 2 W of argon-ion laser pumping. Two independent lasers with 36 fsec and 63 fsec in pulse duration were operated by a 6 W pump laser. In the low-threshold lasers, not only an ordinary mode-locking but also a double-pulse mode-locking, where two pulses circulating in the cavity, was stable.
Akihiro MORIMOTO Tadao OKIMOTO Akira SOGA Tetsuro KOBAYASHI
FM laser operation of a Ti:sapphire laser is studied experimentally for the first time with an internal phase modulator. We obtained extremely wide FM sidebands of 8 THz width whose phase modulation index was 25,000 rad at a modulation frequency of 160 MHz.
Kazuhiro TANAKA Kaoru NAKAJIMA Tetsufumi ODAGAWA Hiroyuki NOBUHARA Kiyohide WAKAO
Laser diodes for optical interconnections are ideally high speed, work over a wide temperature range, and are simple to bias. This paper reports high bit-rate modulation with nearly zero bias with very low threshold 1.3µm-wavelength laser diodes over a wide temperature range. At the high temperature of 80
Shigeo SATO Manabu YUMINE Takayuki YAMA Junichi MUROTA Koji NAKAJIMA Yasuji SAWADA
We have fabricated a microchip of a neural circuit with pulse representation. The neuron output is a voltage pulse train. The synapse is a constant current source whose output is proportional to the duty ratio of neuron output. Membrane potential is charged by collection of synaptic currents through a RC circuit, providing an analog operation similar to the biological neural system. We use a 4-bit SRAM as the memory for synaptic weights. The expected I/O characteristics of the neurons and the synapses were measured experimentally. We have also demonstrated the capability of network operation with the use of synaptic weights, for solving the A/D conversion problem.
Koji NAKAJIMA Shigeo SATO Tomoyasu KITAURA Junichi MUROTA Yasuji SAWADA
We have fabricated a new analog memory with a floating gate as a key component to store synaptic weights for integrated artificial neural networks. The new analog memory comprises a tunnel junction (poly-Si/poly-si oxide/poly-Si sandwich structure), a thin-film transistor, two capacitors, and a floating gate MOSFET. The diffusion of the charges injected through the tunnel junction is controlled by switching operation of the thin-film transistor, and we refer to the new analog memory as switched diffusion analog memory (SDAM). The obtained characteristics of SDAM are a fast switching speed and an improved linearity between the potential of the floating gate and the number of pulse inputs. SDAM can be used in a neural network in which write/erase and read operations are performed simultaneously.
Memory type polymer dispersed liquid crystal (PDLC) can be applied to a thermal addressing display device cell. Making use of its easy fabrication of large area display using flexible film substrate, the PDLC film can be used as reusable paper for direct-view mode display. In this study, memory type PDLC cells are prepared with an aluminum reflector deposited onto one side of the substrate and the reflection property in the PDLC cell with the reflector is clarified and compared to that without the reflector in the off-, on- and memory-states. The increase of contrast ratio and the decrease of driving voltage can be concurrently realized by decreasing the cell thickness by attaching the reflector. In addition, the reflected light in the off-state is bright and colorless due to the reflector, as compared with the weak, bluish reflected light in the cell without the reflector. Reflected light in the on-state and the memory-state are tinged with blue.
Zygmunt KRASISKI Takashi HINATA Shin-ichiro YAMASHITA Adam MAJEWSKI
The improved point-matching method with Mathieu function expansion for the accurate analysis of the W-type elliptical fiber with layers of any ellipticity is proposed. Results of our method are reliable, because we expand the electromagnetic fields by a sum of the complete set of wave functions in each layer of the fiber. Numerical results are presented for the highly-birefringent fibers with a hollow layer outside an elliptical core. It is found that such fibers can realize the large value of the modal birefringence as well as they can be suitable for the single-mode and single-polarization transmission. From the convergence tests, it is confirmed that the relative error of the modal birefringence is less than 0.01%. The comparison of our results with those by previously reported method is presented. The proposed method can be extended for analysis of the elliptical-core fibers with hollow pits and electromagnetic scattering by targets of the complex elliptical geometry.