Hiroaki AKUTSU Ko ARAI
Lanxi LIU Pengpeng YANG Suwen DU Sani M. ABDULLAHI
Xiaoguang TU Zhi HE Gui FU Jianhua LIU Mian ZHONG Chao ZHOU Xia LEI Juhang YIN Yi HUANG Yu WANG
Yingying LU Cheng LU Yuan ZONG Feng ZHOU Chuangao TANG
Jialong LI Takuto YAMAUCHI Takanori HIRANO Jinyu CAI Kenji TEI
Wei LEI Yue ZHANG Hanfeng XIE Zebin CHEN Zengping CHEN Weixing LI
David CLARINO Naoya ASADA Atsushi MATSUO Shigeru YAMASHITA
Takashi YOKOTA Kanemitsu OOTSU
Xiaokang Jin Benben Huang Hao Sheng Yao Wu
Tomoki MIYAMOTO
Ken WATANABE Katsuhide FUJITA
Masashi UNOKI Kai LI Anuwat CHAIWONGYEN Quoc-Huy NGUYEN Khalid ZAMAN
Takaharu TSUBOYAMA Ryota TAKAHASHI Motoi IWATA Koichi KISE
Chi ZHANG Li TAO Toshihiko YAMASAKI
Ann Jelyn TIEMPO Yong-Jin JEONG
Haruhisa KATO Yoshitaka KIDANI Kei KAWAMURA
Jiakun LI Jiajian LI Yanjun SHI Hui LIAN Haifan WU
Gyuyeong KIM
Hyun KWON Jun LEE
Fan LI Enze YANG Chao LI Shuoyan LIU Haodong WANG
Guangjin Ouyang Yong Guo Yu Lu Fang He
Yuyao LIU Qingyong LI Shi BAO Wen WANG
Cong PANG Ye NI Jia Ming CHENG Lin ZHOU Li ZHAO
Nikolay FEDOROV Yuta YAMASAKI Masateru TSUNODA Akito MONDEN Amjed TAHIR Kwabena Ebo BENNIN Koji TODA Keitaro NAKASAI
Yukasa MURAKAMI Yuta YAMASAKI Masateru TSUNODA Akito MONDEN Amjed TAHIR Kwabena Ebo BENNIN Koji TODA Keitaro NAKASAI
Kazuya KAKIZAKI Kazuto FUKUCHI Jun SAKUMA
Yitong WANG Htoo Htoo Sandi KYAW Kunihiro FUJIYOSHI Keiichi KANEKO
Waqas NAWAZ Muhammad UZAIR Kifayat ULLAH KHAN Iram FATIMA
Haeyoung Lee
Ji XI Pengxu JIANG Yue XIE Wei JIANG Hao DING
Weiwei JING Zhonghua LI
Sena LEE Chaeyoung KIM Hoorin PARK
Akira ITO Yoshiaki TAKAHASHI
Rindo NAKANISHI Yoshiaki TAKATA Hiroyuki SEKI
Chuzo IWAMOTO Ryo TAKAISHI
Chih-Ping Wang Duen-Ren Liu
Yuya TAKADA Rikuto MOCHIDA Miya NAKAJIMA Syun-suke KADOYA Daisuke SANO Tsuyoshi KATO
Yi Huo Yun Ge
Rikuto MOCHIDA Miya NAKAJIMA Haruki ONO Takahiro ANDO Tsuyoshi KATO
Koichi FUJII Tomomi MATSUI
Yaotong SONG Zhipeng LIU Zhiming ZHANG Jun TANG Zhenyu LEI Shangce GAO
Souhei TAKAGI Takuya KOJIMA Hideharu AMANO Morihiro KUGA Masahiro IIDA
Jun ZHOU Masaaki KONDO
Tetsuya MANABE Wataru UNUMA
Kazuyuki AMANO
Takumi SHIOTA Tonan KAMATA Ryuhei UEHARA
Hitoshi MURAKAMI Yutaro YAMAGUCHI
Jingjing Liu Chuanyang Liu Yiquan Wu Zuo Sun
Zhenglong YANG Weihao DENG Guozhong WANG Tao FAN Yixi LUO
Yoshiaki TAKATA Akira ONISHI Ryoma SENDA Hiroyuki SEKI
Dinesh DAULTANI Masayuki TANAKA Masatoshi OKUTOMI Kazuki ENDO
Kento KIMURA Tomohiro HARAMIISHI Kazuyuki AMANO Shin-ichi NAKANO
Ryotaro MITSUBOSHI Kohei HATANO Eiji TAKIMOTO
Genta INOUE Daiki OKONOGI Satoru JIMBO Thiem Van CHU Masato MOTOMURA Kazushi KAWAMURA
Hikaru USAMI Yusuke KAMEDA
Yinan YANG
Takumi INABA Takatsugu ONO Koji INOUE Satoshi KAWAKAMI
Fengshan ZHAO Qin LIU Takeshi IKENAGA
Naohito MATSUMOTO Kazuhiro KURITA Masashi KIYOMI
Tomohiro KOBAYASHI Tomomi MATSUI
Shin-ichi NAKANO
Ming PAN
Masaya SHIMAKAWA Shigeki HAGIHARA Naoki YONEZAKI
Many fatal accidents involving safety-critical reactive systems have occurred in unexpected situations, which were not considered during the design and test phases of system development. To prevent such accidents, reactive systems should be designed to respond appropriately to any request from an environment at any time. Verifying this property during the specification phase reduces the development costs of safety-critical reactive systems. This property of a specification is commonly known as realizability. The complexity of the realizability problem is 2EXPTIME-complete. We have introduced the concept of strong satisfiability, which is a necessary condition for realizability. Many practical unrealizable specifications are also strongly unsatisfiable. In this paper, we show that the complexity of the strong satisfiability problem is EXPSPACE-complete. This means that strong satisfiability offers the advantage of lower complexity for analysis, compared to realizability. Moreover, we show that the strong satisfiability problem remains EXPSPACE-complete even when only formulae with a temporal depth of at most 2 are allowed.
Shuai MU Dongdong LI Yubei CHEN Yangdong DENG Zhihua WANG
By exploiting data-level parallelism, Graphics Processing Units (GPUs) have become a high-throughput, general purpose computing platform. Many real-world applications especially those following a stream processing pattern, however, feature interleaved task-pipelined and data parallelism. Current GPUs are ill equipped for such applications due to the insufficient usage of computing resources and/or the excessive off-chip memory traffic. In this paper, we focus on microarchitectural enhancements to enable task-pipelined execution of data-parallel kernels on GPUs. We propose an efficient adaptive dynamic scheduling mechanism and a moderately modified L2 design. With minor hardware overhead, our techniques orchestrate both task-pipeline and data parallelisms in a unified manner. Simulation results derived by a cycle-accurate simulator on real-world applications prove that the proposed GPU microarchitecture improves the computing throughput by 18% and reduces the overall accesses to off-chip GPU memory by 13%.
Chun-Hung CHEN Yuan-Liang TANG Wen-Shyong HSIEH
Digital watermarking techniques have been used to assert the ownerships of digital images. The ownership information is embedded in an image as a watermark so that the owner of the image can be identified. However, many types of attacks have been used in attempts to break or remove embedded watermarks. Therefore, the watermark should be very robust against various kinds of attacks. Among them, the print-and-scan (PS) attack is very challenging because it not only alters the pixel values but also changes the positions of the original pixels. In this paper, we propose a watermarking system operating in the discrete cosine transform (DCT) domain. The polarities of the DCT coefficients are modified for watermark embedding. This is done by considering the properties of DCT coefficients under the PS attack. The proposed system is able to maintain the image quality after watermarking and the embedded watermark is very robust against the PS attack as well.
Cuiyin LIU Shu-qing CHEN Qiao FU
In this paper, an efficient multi-modal medical image fusion approach is proposed based on local features contrast and bilateral sharpness criterion in nonsubsampled contourlet transform (NSCT) domain. Compared with other multiscale decomposition analysis tools, the nonsubsampled contourlet transform not only can eliminate the “block-effect” and the “pseudo-effect”, but also can represent the source image in multiple direction and capture the geometric structure of source image in transform domain. These advantages of NSCT can, when used in fusion algorithm, help to attain more visual information in fused image and improve the fusion quality. At the same time, in order to improve the robustness of fusion algorithm and to improve the quality of the fused image, two selection rules should be considered. Firstly, a new bilateral sharpness criterion is proposed to select the lowpass coefficient, which exploits both strength and phase coherence. Secondly, a modified SML (sum modified Laplacian) is introduced into the local contrast measurements, which is suitable for human vision system and can extract more useful detailed information from source images. Experimental results demonstrate that the proposed method performs better than the conventional fusion algorithm in terms of both visual quality and objective evaluation criteria.
Deshan CHEN Atsushi MIYAMOTO Shun'ichi KANEKO
This paper describes a robust three-dimensional (3D) surface reconstruction method that can automatically eliminate shadowing errors. For modeling shadowing effect, a new shadowing compensation model based on the angle distribution of backscattered electrons is introduced. Further, it is modified with respect to some practical factors. Moreover, the proposed iterative shadowing compensation method, which performs commutatively between the compensation of image intensities and the modification of the corresponding 3D surface, can effectively provide both an accurate 3D surface and compensated shadowless images after convergence.
Rong HUANG Palaiahnakote SHIVAKUMARA Yaokai FENG Seiichi UCHIDA
To handle the variety of scene characters, we propose a cooperative multiple-hypothesis framework which consists of an image operator set module, an Optical Character Recognition (OCR) module and an integration module. Multiple image operators activated by multiple parameters probe suspected character regions. The OCR module is then applied to each suspected region and returns multiple candidates with weight values for future integration. Without the aid of the heuristic rules which impose constraints on segmentation area, aspect ratio, color consistency, text line orientations, etc., the integration module automatically prunes the redundant detection/recognition and pads the missing detection/recognition. The proposed framework bridges the gap between scene character detection and recognition, in the sense that a practical OCR engine is effectively leveraged for result refinement. In addition, the proposed method achieves the detection and recognition at the character level, which enables dealing with special scenarios such as single character, text along arbitrary orientations or text along curves. We perform experiments on the benchmark ICDAR 2011 Robust Reading Competition dataset which includes a text localization task and a word recognition task. The quantitative results demonstrate that multiple hypotheses outperform a single hypothesis, and be comparable with state-of-the-art methods in terms of recall, precision, F-measure, character recognition rate, total edit distance and word recognition rate. Moreover, two additional experiments are conducted to confirm the simplicity of parameter setting in this proposal.
Nattapong TONGTEP Thanaruk THEERAMUNKONG
Automated or semi-automated annotation is a practical solution for large-scale corpus construction. However, the special characteristics of Thai language, such as lack of word-boundary and sentence-boundary markers, trigger several issues in automatic corpus annotation. This paper presents a multi-stage annotation framework, containing two stages of chunking and three stages of tagging. The two chunking stages are pattern matching-based named entity (NE) extraction and dictionary-based word segmentation while the three succeeding tagging stages are dictionary-, pattern- and statist09812490981249ical-based tagging. Applying heuristics of ambiguity priority, NE extraction is performed first on an original text using a set of patterns, in the order of pattern ambiguity. Next, the remaining text is segmented into words with a dictionary. The obtained chunks are then tagged with types of named entities or parts-of-speech (PoS) using dictionaries, patterns and statistics. Focusing on the reduction of human intervention in corpus construction, our experimental results show that the dictionary-based tagging process can assign unique tags to 64.92% of the words, with the remaining of 24.14% unknown words and 10.94% ambiguously tagged words. Later, the pattern-based tagging can reduce unknown words to only 13.34% while the statistical-based tagging can solve the ambiguously tagged words to only 3.01%.
Hirofumi TSUZUKI Mauricio KUGLER Susumu KUROYANAGI Akira IWATA
This paper presents a Complex-Valued Neural Network-based sound localization method. The proposed approach uses two microphones to localize sound sources in the whole horizontal plane. The method uses time delay and amplitude difference to generate a set of features which are then classified by a Complex-Valued Multi-Layer Perceptron. The advantage of using complex values is that the amplitude information can naturally masks the phase information. The proposed method is analyzed experimentally with regard to the spectral characteristics of the target sounds and its tolerance to noise. The obtained results emphasize and confirm the advantages of using Complex-Valued Neural Networks for the sound localization problem in comparison to the traditional Real-Valued Neural Network model.
In the Knill-Laflamme-Milburn (KLM) scheme, quantum teleportation is nearly deterministically carried out with linear optics. To reconstruct an original quantum state, however, a phase shift is required for an output state. We exhibit a proper phase shift to complete quantum teleportation.
Junya KAIDA Yuko HARA-AZUMI Takuji HIEDA Ittetsu TANIGUCHI Hiroyuki TOMIYAMA Koji INOUE
This paper studies the static mapping of multiple applications on embedded many-core SoCs. The mapping techniques proposed in this paper take into account both inter-application and intra-application parallelism in order to fully utilize the potential parallelism of the many-core architecture. Two approaches are proposed for static mapping: one approach is based on integer linear programming and the other is based on a greedy algorithm. Experiments show the effectiveness of the proposed techniques.
Donghai TIAN Mo CHEN Changzhen HU Xuanya LI
As more and more software vulnerabilities are exposed, shellcode has become very popular in recent years. It is widely used by attackers to exploit vulnerabilities and then hijack program's execution. Previous solutions suffer from limitations in that: 1) Some methods based on static analysis may fail to detect the shellcode using obfuscation techniques. 2) Other methods based on dynamic analysis could impose considerable performance overhead. In this paper, we propose Lemo, an efficient shellcode detection system. Our system is compatible with commodity hardware and operating systems, which enables deployment. To improve the performance of our system, we make use of the multi-core technology. The experiments show that our system can detect shellcode efficiently.
Jeonggon LEE Bum-Soo KIM Mi-Jung CHOI Yang-Sae MOON
Histogram sequences represent high-dimensional time-series converted from images by space filling curves (SFCs). To overcome the high-dimensionality nature of histogram sequences (e.g., 106 dimensions for a 1024×1024 image), we often use lower-dimensional transformations, but the tightness of their lower-bounds is highly affected by the types of SFCs. In this paper we attack a challenging problem of evaluating which SFC shows the better performance when we apply the lower-dimensional transformation to histogram sequences. For this, we first present a concept of spatial locality and propose spatial locality preservation metric (SLPM in short). We then evaluate five well-known SFCs from the perspective of SLPM and verify that the evaluation result concurs with the actual transformation performance. Finally, we empirically validate the accuracy of SLPM by providing that the Hilbert-order with the highest SLPM also shows the best performance in k-NN (k-nearest neighbors) search.
Mutual information (MI) is a standard measure of statistical dependence of random variables. However, due to the log function and the ratio of probability densities included in MI, it is sensitive to outliers. On the other hand, the L2-distance variant of MI called quadratic MI (QMI) tends to be robust against outliers because QMI is just the integral of the squared difference between the joint density and the product of marginals. In this paper, we propose a kernel least-squares QMI estimator called least-squares QMI (LSQMI) that directly estimates the density difference without estimating each density. A notable advantage of LSQMI is that its solution can be analytically and efficiently computed just by solving a system of linear equations. We then apply LSQMI to dependence-maximization clustering, and demonstrate its usefulness experimentally.
Yun JIN Peng SONG Wenming ZHENG Li ZHAO Minghai XIN
In this paper, a two-layer Multiple Kernel Learning (MKL) scheme for speaker-independent speech emotion recognition is presented. In the first layer, MKL is used for feature selection. The training samples are separated into n groups according to some rules. All groups are used for feature selection to obtain n sparse feature subsets. The intersection and the union of all feature subsets are the result of our feature selection methods. In the second layer, MKL is used again for speech emotion classification with the selected features. In order to evaluate the effectiveness of our proposed two-layer MKL scheme, we compare it with state-of-the-art results. It is shown that our scheme results in large gain in performance. Furthermore, another experiment is carried out to compare our feature selection method with other popular ones. And the result proves the effectiveness of our feature selection method.
For face recognition with a single training image per person, Collaborative Representation based Classification (CRC) has significantly less complexity than Extended Sparse Representation based Classification (ESRC). However, CRC gets lower recognition rates than ESRC. In order to combine the advantages of CRC and ESRC, we propose Extended Collaborative Representation based Classification (ECRC) for face recognition with a single training image per person. ECRC constructs an auxiliary intraclass variant dictionary to represent the possible variation between the testing and training images. Experimental results show that ECRC outperforms the compared methods in terms of both high recognition rates and low computation complexity.
Linfeng XU Liaoyuan ZENG Zhengning WANG
In this letter, we use the saliency maps obtained by several bottom-up methods to learn a model to generate a bottom-up saliency map. In order to consider top-down image semantics, we use the high-level features of objectness and background probability to learn a top-down saliency map. The bottom-up map and top-down map are combined through a two-layer structure. Quantitative experiments demonstrate that the proposed method and features are effective to predict human fixation.