The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] tag(917hit)

601-620hit(917hit)

  • A Simple Method for the Measurement of the Phase and Power of 3rd-Order Inter-Modulation Components of the Output of Multi-Stage Power Amplifiers

    Toshifumi NAKATANI  Toru MATSUURA  Koichi OGAWA  

     
    PAPER-Active Devices and Circuits

      Vol:
    E87-C No:5
      Page(s):
    749-761

    A simple method has been proposed for the measurement of the output power and phase characteristics of the 3rd-order inter-modulation distortion (IM3) components appearing in multistage power amplifiers. By adopting a unique definition of the phase for the IM3 components that is independent of the delay time caused by transmission lines and other instrument devices, it is possible to measure the phase, merely by using a vector signal analyzer. It is demonstrated that an accurate estimation of the IM3 characteristics of two-stage cascaded power amplifiers for cellular radio handheld terminals can be made by using the IM3 characteristics of the 1st and 2nd-stage amplifiers as measured by the proposed method. The results indicate that it is possible to reduce the dissipation power by 18% at 28 dBm RF output power with respect to conventional measurement methods. Further studies show that the error in the resultant vector of the estimated IM3 is less than 1 dB, when the asymmetry characteristics of the IM3 sidebands in the 2nd-stage amplifier are less than 7.3%.

  • Offset-Compensated Direct Sensing and Charge-Recycled Precharge Schemes for Sub-1.0 V High-Speed DRAM's

    Jae-Yoon SIM  Kee-Won KWON  Ki-Chul CHUN  Dong-Il SEO  

     
    PAPER-Integrated Electronics

      Vol:
    E87-C No:5
      Page(s):
    801-808

    This paper proposes a sensing and a precharge circuit schemes suitable for low-voltage and high-speed DRAM design. The proposed offset-compensated direct sensing scheme improves refresh characteristics as well as speed performance. To minimize the number of control switches for the offset compensation, only the output branches of differential amplifiers are implemented in each bit-line pair with a semi-global bias branch, which also reduces 50-percent of bias current. The addition of the direct sensing feature to the offset-compensated pre-sensing dramatically increases the differential current output. For the fast bit-line equalization, a charge-recycled precharge scheme is proposed to reuse VPP discharging current for the generation of a boosted bias without additional charge pumping. The two circuit schemes were verified by the implementation of a 256 Mb SDRAM with a 0.1 µm dual-doped poly-silicon technology.

  • A New Method to Extract MOSFET Threshold Voltage, Effective Channel Length, and Channel Mobility Using S-parameter Measurement

    Han-Yu CHEN  Kun-Ming CHEN  Guo-Wei HUANG  Chun-Yen CHANG  Tiao-Yuan HUANG  

     
    PAPER-Active Devices and Circuits

      Vol:
    E87-C No:5
      Page(s):
    726-732

    In this work, a simple method for extracting MOSFET threshold voltage, effective channel length and channel mobility by using S-parameter measurement is presented. In the new method, the dependence between the channel conductivity and applied gate voltage of the MOSFET device is cleverly utilized to extract the threshold voltage, while biasing the drain node of the device at zero voltage during measurement. Moreover, the effective channel length and channel mobility can also be obtained with the same measurement. Furthermore, all the physical parameters can be extracted directly on the modeling devices without relying on specifically designed test devices. Most important of all, only one S-parameter measurement is required for each device under test (DUT), making the proposed extraction method promising for automatic measurement applications.

  • A Feed-Forward Dynamic Voltage Control Algorithm for Low Power MPEG4 on Multi-Regulated Voltage CPU

    Hideo OHIRA  Kentaro KAWAKAMI  Miwako KANAMORI  Yasuhiro MORITA  Masayuki MIYAMA  Masahiko YOSHIMOTO  

     
    PAPER

      Vol:
    E87-C No:4
      Page(s):
    457-465

    In this paper, we describe a feed-forward dynamic voltage/clock-frequency control method enabling low power MPEG4 on multi-regulated voltage CPU with combining the characteristics of the CPU and the video encoding processing. This method theoretically achieves minimum low power consumption which is close to the hardware-level power consumption. Required processing performance for MPEG4 visual encoding totally depends on the activity of the sequence, and high motion sequence requires high performance and low motion sequence requires low performance. If required performance is predictable, lower power consumption can be achieved with controlling the adequate voltage and clock-frequency dynamically at every frame. The proposed method in this paper is predicting the required processing performance of a future frame using our unique feed-forward analysis method and controlling a voltage and frequency dynamically at every frame along with the forward analysis value. The simulation results indicate that the proposed feed-forward analysis method adequately predicts the required processing performance of every future frame, and enables to minimize power consumption on software basis MPEG4 visual encoding processing. In the case that CPU has Frequency-Voltage characteristics of 1.8 V @400 MHz to 1.0 V @189 MHz, the proposed method reduces the power consumption approximately 37% at high motion sequences or 65% at low motion sequences comparing with the conventional software video encoding method.

  • A Physical Synthesis Methodology for Multi-Threshold-Voltage Design in Low-Power Embedded Processor

    Toshihiro HATTORI  Kenji OGURA  

     
    PAPER

      Vol:
    E87-C No:4
      Page(s):
    520-526

    In low-power embedded processors design, stand-by power constraint is also important with average power and operation frequency. Multi-threshold-voltage cells are used in the design and the ratio of low-Vth cells should be controlled. On the other hand, physical synthesis flow is indispensable to achieve high performance and short design time. This paper proposes a physical synthesis methodology under the restriction of maximum low-Vth cell ratio. The experimental results show that our method can achieve only 4 MHz slower logic within 5% margin of the target low-Vth ratio. We have applied this design flow in an application processor design and the designed processor demonstrates 360 MIPS at 200 MHz only with 80 mW at 1.0 V, namely 4500 MIPS/W and 4.2 mA leakage current without any power-cut mode.

  • Ultralow-Voltage MTCMOS/SOI Circuits for Batteryless Mobile System

    Takakuni DOUSEKI  Masashi YONEMARU  Eiji IKUTA  Akira MATSUZAWA  Atsushi KAMEYAMA  Shunsuke BABA  Tohru MOGAMI  Hakaru KYURAGI  

     
    INVITED PAPER

      Vol:
    E87-C No:4
      Page(s):
    437-447

    This paper describes an ultralow-power multi-threshold (MT) CMOS/SOI circuit technique that mainly uses fully-depleted MOSFETs. The MTCMOS/SOI circuit, which combines fully-depleted low- and medium-Vth CMOS/SOI logic gates and high-Vth power-switch transistors, makes it possible to lower the supply voltage to 0.5 V and reduce the power dissipation of LSIs to the 1-mW level. We overview some MTCMOS/SOI digital and analog components, such as a CPU, memory, analog/RF circuit and DC-DC converter for an ultralow-power mobile system. The validity of the ultralow-voltage MTCMOS/SOI circuits is confirmed by the demonstration of a self-powered 300-MHz-band short-range wireless system. A 1-V SAW oscillator and a switched-capacitor-type DC-DC converter in the transmitter makes possible self-powered transmission by the heat from a hand. In the receiver, a 0.5-V digital controller composed of a 8-bit CPU, 256-kbit SRAM, and ROM also make self-powered operation under illumination possible.

  • Low-Power Multiple-Valued Current-Mode Logic Using Substrate Bias Control

    Akira MOCHIZUKI  Takahiro HANYU  

     
    PAPER

      Vol:
    E87-C No:4
      Page(s):
    582-588

    A new multiple-valued current-mode (MVCM) logic circuit using substrate bias control is proposed for low-power VLSI systems at higher clock frequency. Since a multi-level threshold value is represented as a threshold voltage of an MOS transistor, a voltage comparator is realized by a single MOS transistor. As a result, two basic components, a comparator and an output generator in the MVCM logic circuit can be merged into a single MOS differential-pair circuit where the threshold voltages of MOS transistors are controlled by substrate biasing. Moreover, the leakage current is also reduced using substrate bias control. As a typical example of an arithmetic circuit, a radix-2 signed-digit full adder using the proposed circuit is implemented in a 0.18- µm CMOS technology. Its dynamic and static power dissipations are reduced to about 79 percent and 14 percent, respectively, in comparison with those of the corresponding binary CMOS implementation at the supply voltage of 1.8 V and the clock frequency of 500 MHz.

  • Low Voltage and Low Power CMOS Exponential-Control Variable-Gain Amplifier

    Weihsing LIU  Shen-Iuan LIU  

     
    LETTER-Circuit Theory

      Vol:
    E87-A No:4
      Page(s):
    952-954

    A compact, low voltage, low power and wide output operating range CMOS exponential-control variable-gain amplifier has been presented. The gain control range of the proposed variable-gain amplifier can be about 50.7 dB while the maximum linearity error is about -1.09%. For the case of supply voltage VDD = 2 V, the maximum power dissipation is only 1.6 µW. The proposed circuit has been fabricated in a 0.5 µm 2p2m N-well CMOS process. Experimental results are given to confirm the feasibility of the proposed variable gain amplifier. The proposed circuit is expected to be useful in analog signal processing applications.

  • Reducing Startup-Time Inrush Current in Charge-Pump Circuits

    Takao MYONO  Yoshitaka ONAYA  Kenji KASHIWASE  Haruo KOBAYASHI  Tomoaki NISHI  Kazuyuki KOBAYASHI  Tatsuya SUZUKI  Kazuo HENMI  

     
    PAPER

      Vol:
    E87-A No:4
      Page(s):
    787-791

    We have developed a high-efficiency charge-pump power supply circuit with large output current capability for mobile equipment. However, during the commercialization phase, we found that the large inrush current of 270 mA at charge-pump circuit startup-time could cause problems. In this paper we analyze the mechanism that causes this inrush current, and we propose circuitry to reduce it. We show SPICE simulation and measurement results for our proposed circuitry that confirm its effectiveness. By incorporating this circuitry, startup-time inrush current was reduced to 30 mA.

  • +3 V/-3 V Operation 1.2 Gbps Write Driver for Hard Disk Drives

    Yasuyuki OKUMA  Kenji MAIO  Hiroyasu YOSHIZAWA  

     
    PAPER

      Vol:
    E87-C No:4
      Page(s):
    578-581

    This paper describes low voltage write driver with pulse adding circuit. The presented write driver is constructed from the main switch circuit with impedance matching and pulse adding circuits and a timing generator. The main switch circuit is voltage type driver with matching resisters for flexible lines between a write driver and a write head. For 1.2 Gbps operation, the flexible lines have to be treated as transmission lines. Furthermore, to achieve steep rise/fall edge, the pulse adding circuits to generate double of supply voltage, +3.3/-3 V, at rise/fall edge have been developed. The write driver was implemented using 0.35 µm BiCMOS process. The die size is 1.2 mm0.6 mm and the measured results achieved tr/tf of less than 0.25 ns, tp of 0.5 ns and Ip of 73 mA.

  • A New Solution to Power Supply Voltage Drop Problems in Scan Testing

    Takaki YOSHIDA  Masafumi WATARI  

     
    PAPER-Scan Testing

      Vol:
    E87-D No:3
      Page(s):
    580-585

    As semiconductor manufacturing technology advances, power dissipation and noise in scan testing have become critical problems. Our studies on practical LSI manufacturing show that power supply voltage drop causes testing problems during shift operations in scan testing. In this paper, we present a new testing method named MD-SCAN (Multi-Duty SCAN) which solves power supply voltage drop problems, as well as its experimental results applied to practical LSI chips.

  • A Realization of a Common-Source FG-MOSFET with a Simple Electronic Vth Adjustment Almost Irrelevant to the Amount of the Pre-stored Charge on the Floating Gate

    Takahiro INOUE  Eizo ICHIHARA  Toshitaka YAMAKAWA  Akio TSUNEDA  

     
    LETTER-Analog Signal Processing

      Vol:
    E87-A No:3
      Page(s):
    753-756

    A simple CMOS Vth-adjustment method for a common-source floating-gate MOSFET(FG-MOSFET) is proposed. The apparent threshold voltage Vtha of an FG-MOSFET can be defined by a reference voltage Vref and/or a reference current Iref being almost irrelevant to the pre-stored charge on the floating gate.

  • Low Temperature Deposition of Indium Tin Oxide Thin Films by Low Voltage Sputtering in Various Rare Gases

    Yoichi HOSHI  Hidehiko SHIMIZU  

     
    PAPER

      Vol:
    E87-C No:2
      Page(s):
    212-217

    Indium tin oxide (ITO) films were deposited at a temperature below 50 by a low-voltage sputtering system. The sputtering voltage was fixed at 100 V and Ar, Kr, and Xe were used as the sputtering gases. Compared with the sputtering in Ar gas, the sputtering in Kr or Xe gas caused a significant suppression of crystallization of the deposited film and resulted in the formation of amorphous films. These films had much lower resistivities than the films deposited using Ar gas, since the Hall mobility of the films had a larger value. Typical Hall mobility and carrier density are 50 cm2/Vsec, and 51020 cm-3, respectively. This improvement was attributable to the reduction of high-energy particle bombardment to the film surface in the sputtering. These films are stable at a temperature below 150, and crystallization occurs at a temperature above 150.

  • Capacitance Value Free Switched Capacitor DC-DC Voltage Converter Realizing Arbitrary Rational Conversion Ratio

    Kouhei YAMADA  Nobuo FUJII  Shigetaka TAKAGI  

     
    PAPER

      Vol:
    E87-A No:2
      Page(s):
    344-349

    A switched capacitor DC-DC voltage converter that has an arbitrary conversion ratio of rational number is presented. A given voltage conversion ratio is systematically expanded to construct a switched capacitor circuit that operates with a two-phase switching clock. The conversion ratio is completely free from capacitance values and ratios under the assumption that there is no charge transfer between the two switching phases. This means that the converter cannot supply any power to the load. This restricts the application of the converters to a very limited area such as a voltage reference generator that only provides a reference voltage and no power to a circuit. The conditions for the convergence of the output voltage and the stray capacitor effects are discussed. The output voltage error and required switching frequency are also discussed when the converter is used as a DC voltage supply source that provides power to a load.

  • Low-Voltage CMOS Voltage-Mode Divider and Its Application

    Weihsing LIU  Shen-Iuan LIU  

     
    PAPER

      Vol:
    E87-A No:2
      Page(s):
    330-334

    A CMOS voltage-mode divider, which can operate for low supply voltage and low power dissipation, is presented in this paper. The proposed voltage-mode divider can be used to realize a pseudo-exponential function generator. The experimental results of the proposed voltage-mode divider show that, under the supply voltage VDD=2.5 V, the linearity error is less than 1.18% and the power consumption is only 102 µW. Also the proposed pseudo-exponential function generator exhibits a 15 dB output dynamic range and the linear error is less than1.54%. Both the proposed circuits have been fabricated in a 0.5 µm N-well CMOS 2P2M process. The proposed circuits are expected to be useful in analog signal processing applications.

  • Voltage-Mode Universal Biquadratic Filters Using CCIIs

    Jiun-Wei HORNG  

     
    LETTER

      Vol:
    E87-A No:2
      Page(s):
    406-409

    Two new voltage-mode universal biquadratic filters each with three input signals and one output signal are presented. Each proposed universal biquadratic filter is composed of only two CCIIs, two capacitors and two resistors and can realize all the standard filter functions, that is, highpass, bandpass, lowpass, notch and allpass filters (one more active device is needed for the realization of allpass filter). The proposed circuits have good sensitivities performance and have no requirements for component-matching conditions.

  • Drain Current Zero-Temperature-Coefficient Point for CMOS Temperature-Voltage Converter Operating in Strong Inversion

    Hidetoshi IKEDA  Kawori TAKAKUBO  Hajime TAKAKUBO  

     
    PAPER

      Vol:
    E87-A No:2
      Page(s):
    370-375

    Temperature dependence of drain current is analyzed in detail in terms of mobility and threshold voltage. From the analyses, it is proved that a point exists that the drain current is fixed without depending on temperature when the MOSFET operates in strong inversion. Applying this characteristic, a CMOS temperature-voltage converter operating in strong inversion with high linearity is proposed. SPICE simulation and experimental results are shown, and the corresponding performances are discussed.

  • A Self-Adjusting Destage Algorithm with High-Low Water Mark in Cached RAID5

    Young Jin NAM  Chanik PARK  

     
    PAPER-Dependable Systems

      Vol:
    E86-D No:12
      Page(s):
    2527-2535

    The High-Low Water Mark destage (HLWM) algorithm is widely used to enable cached RAID5 to flush dirty data from its write cache to disks due to the simplicity of its operations. It starts and stops a destaging process based on the two thresholds that are configured at the initialization time with the best knowledge of its underlying storage performance capability and its workload pattern which includes traffic intensity, access patterns, etc. However, each time the current workload varies from the original, the thresholds need to be re-configured with the changed workload. This paper proposes an efficient destage algorithm which automatically re-configures its initial thresholds according to the changed traffic intensity and access patterns, called adaptive thresholding. The core of adaptive thresholding is to define the two thresholds as the multiplication of the referenced increasing and decreasing rates of the write cache occupancy level and the time required to fill and empty the write cache. We implement the proposed algorithm upon an actual RAID system and then verify the ability of the auto-reconfiguration with synthetic workloads having a different level of traffic intensity and access patterns. Performance evaluations under well-known traced workloads reveal that the proposed algorithm reduces disk IO traffic by about 12% with a 6% increase in the overwrite ratio compared with the HLWM algorithm.

  • Analysis and Design of a Single-Stage Single-Switch Power-Factor-Corrected Converter with Direct Power Transfer

    Dah-Chuan LU  Ki-Wai CHENG  Yim-Shu LEE  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E86-B No:12
      Page(s):
    3606-3613

    By adding an auxiliary transformer to a single-stage single-switch power-factor-corrected converter (S4PFCC), the storage capacitor voltage and its range of voltage change against line voltage change are reduced. In addition, this transformer provides a direct power transfer path for input line to output load to increase the conversion efficiency. High power factor is maintained due to the elimination of dead angle of the input current. This paper presents detailed analysis and optimal design of a discontinuous conduction mode (DCM) boost-flyback S4PFCC with the auxiliary transformer. Experimental results for a 15 V/60 W prototype and with comparison to a S4PFCC without the auxiliary transformer are given to show the proposed approach effective.

  • A New Fast Image Retrieval Using the Condensed Two-Stage Search Method

    JungWon CHO  SeungDo JEONG  GeunSeop LEE  SungHo CHO  ByungUk CHOI  

     
    LETTER-Multimedia Systems

      Vol:
    E86-B No:12
      Page(s):
    3658-3661

    In a content-based image retrieval (CBIR) system, both the retrieval relevance and the response time are very important. This letter presents the condensed two-stage search method as a new fast image retrieval approach by making use of the property of Cauchy-Schwarz inequality. The method successfully reduces the overall processing time for similarity computation, while maintaining the same retrieval relevance as the conventional exhaustive search method. By the extensive computer simulations, we observe that the condensed two-stage search method is more effective as the number of images and dimensions of the feature space increase.

601-620hit(917hit)