The search functionality is under construction.

IEICE TRANSACTIONS on Electronics

  • Impact Factor

    0.48

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.3

Advance publication (published online immediately after acceptance)

Volume E79-C No.11  (Publication Date:1996/11/25)

    Special Issue on Quantum Effect Devices and Their Fabrication Technologies
  • FOREWORD

    Takashi MIZUTANI  

     
    FOREWORD

      Page(s):
    1479-1480
  • Analog Computation Using Quantum Structures--A Promising Computation Architecture for Quantum Processors--

    Yoshihito AMEMIYA  

     
    INVITED PAPER

      Page(s):
    1481-1486

    Analog computation is a processing method that solves problems utilizing an analogy of a physical system to the problem. As it is based on actual physical effects and not on symbolic operations, it is therefore a promising architecture for quantum processors. This paper presents an idea for relating quantum structures with analog computation. As an instance, a method is proposed for solving an NP-complete (nondeterminis-tic polynomial time complete) problem, the three-color-map problem, by using a quantum-cell circuit. The computing process is parallel and instantaneous, so making it possible to obtain the solution in a short time regardless of the size of the problem.

  • Growth and Optical Properties of Self-Assembled Quantum Dots for Semiconductor Lasers with Confined Electrons and Photons

    Yasuhiko ARAKAWA  Masao NISHIOKA  Hajime NAKAYAMA  Masaki KITAMURA  

     
    INVITED PAPER

      Page(s):
    1487-1494

    We discuss fabrication of InGaAs quantum dot structures using the self-assembling growth technique with the Stranski-Krastanow growth mode in MOCVD, including optical ploperties of the nano-structures. The formation process of the quantum dot islands was clarified by observing the samples grown under various conditions with an atomic force microscope. A trial for self-alignment of the quantum dots was also investigated. On the basis of these results, as the first step toward the ultimate semiconductor lasers in which both electrons and photons are fully quantized, a vertical microcavity InGaAs/GaAs quantum dot laser was demonstrated. Finally a perspective of the quantum dot lasers is discussed, including the bottleneck issues and the impact of the quantum dot structures for reducing threshold current in wide bandgap lasers such as GaN lasers.

  • Self-Organization Phenomenon in a Strained InGaAs System and Its Application for Quantum Disk Lasers

    Jiro TEMMYO  Eiichi KURAMOCHI  Mitsuru SUGO  Teruhiko NISHIYA  Richard NOTZEL  Toshiaki TAMAMURA  

     
    INVITED PAPER

      Page(s):
    1495-1502

    We have recently discovered a novel phenomenon for the fabrication of nanostructures. A self-organization phenomenon of a strained InGaAs/AlGaAs system on a GaAs (311)B substrate during metal-organic vapor phase epitaxial growth is described, and nano-scale confinement lasers with self-organized InGaAs quantum disks are mentioned. Low-threshold operation of strained InGaAs quantum disk lasers is achieved under a continuous-wave condition at room temperature. The threshold current is around 20 mA, which is consider-ably lower than that of a reference double-quantum-well laser on a GaAs (100) substrate grown side-by-side. However, the light output versus the driving current exhibits a pronounced tendency towards a saturation compared to that of the (100) quantum well laser. We also discuss new methods using self-organization for nanofabrication to produce high-quality low-dimensional optical devices, considering requirements and the current status for next-generation optical devices.

  • Si Single-Electron Transistors on SIMOX Substrates

    Yasuo TAKAHASHI  Akira FUJIWARA  Masao NAGASE  Hideo NAMATSU  Kenji KURIHARA  Kazumi IWADATE  Katsumi MURASE  

     
    INVITED PAPER

      Page(s):
    1503-1508

    A Si single electron transistor (SET) was fabricated by converting a one-dimensional Si wire on a SIMOX substrate into a small Si island with a tunneling barrier at each end by means of pattern-dependent oxidation. Since the size of the Si island was as small as around 10 nm owing to this novel technique, the total capacitance of the SET was reduced to a value on the order of 1 aF, which guarantees the conductance oscillation of the SET even at room temperature. Furthermore, a linear relation between the designed wire length and the gate capacitance of SETs was obtained, which clearly indicates that the single island was actually formed in the middle of the one dimensional Si wire. These results were achieved owing to the highly reproducible fabrication process based on pattern dependent oxidation of SIMOX-Si layers. In addition, the fluctuation of the electrical characteristics of the SETs Was studied in relation to the wire size fluctuations. It was found that the fluctuatian is caused predominantly by the roughness of the sidewall surface of the resist pattern.

  • Room Temperature Operated Single Electron Transistor by STM Nano-Oxidation Process: Fabrication Process and Electrical Properties

    Kazuhiko MATSUMOTO  

     
    INVITED PAPER

      Page(s):
    1509-1514

    New fabrication process for the nano-meter order structure was developed using the STM. The process named "STM nano-oxidation process" could oxidize the titanium metal to form the few tens of nano-meter oxidized titanium line which works as an energy barrier for the electron. The electrical properties of the TiOx line are examined in detail. The single electron transistors with back gate, or side gate, and also those with multi-islands are fabricated using STM nano-oxidation process. The single electron transistor showed the clear Coulomb gap of -160 mV, and the Coulomb oscillation with 400 mV period even at room temperature.

  • Device Technology for Monolithic Integration of InP-Based Resonant Tunneling Diodes and HEMTs

    Kevin Jing CHEN  Koichi MAEZAWA  Takao WAHO  Masafumi YAMAMOTO  

     
    PAPER

      Page(s):
    1515-1524

    This paper presents the device technology for monolithic integration of InP-based resonant tunneling diodes (RTDs) and high electron mobility transistors (HEMTs). The potential of this technology for applications in quantum functional devices and circuits is demonstrated in two integration schemes in which RTDs and FETs are integrated either in Parallel or in series. Based on the parallel integration scheme, we demonstrate an integrated device which exhibits negative differential resistance and modulated peak current. This integrated device forms the foundation of a new category of functional circuits featuring clocked supply voltage. Based on the series integration scheme, resonant-tunneling high electron mobility transistors (RTHEMTs) with novel current-voltage characteristics and useful circuit applications are demonstrated. The high-frequency characteristics of RTHEMTs are also reported.

  • Current-Voltage Characteristics of Triple-Barrier Resonant Tunneling Diodes Including Coherent and Incoherent Tunneling Processes

    Riichiro TAKEMURA  Michihiko SUHARA  Yasuyuki MIYAMOTO  Kazuhito FURUYA  Yuji NAKAMURA  

     
    PAPER

      Page(s):
    1525-1529

    Current-voltage characteristics of triple-barrier resonant tunneling diodes are theoretically analyzed taking phase breaking into account. The peak current in predicted using conventional theories is much smaller, typically by a factor of 1/3000 for a coherent length of 100 nm, than that measured because the incoherent tunneling process is neglected. We take both the coherent and the incoherent tunneling processes into account in the analysis and show that the product of the peak current and the voltage width at half maximum of the peak current is almost constant even when the phase coherent length varies between 50 and 1000 nm. The peak current density increases by two orders of magnitude in the model developed here.

  • Operation Speed Consideration of Resonant Tunneling Logic Gate Based on Circuit Simulation

    Yutaka OHNO  Shigeru KISHIMOTO  Takashi MIZUTANI  Koichi MAEZAWA  

     
    PAPER

      Page(s):
    1530-1536

    We analyzed the operation speed of the resonant tunneling logic gate, MOBILE, using a simple equivalent circuit model and varying parameters of I-V characteristics and capacitance of RTTs(resonant tunneling transistors). The switching time for large peak-to-valley(P/V)current ratios is smaller at small Vbmax(maximum bias voltage), but larger at large Vbmax than that for small P/V ratios in the case of present I-V characteristics with flat valley current. It is also demonstrated that the MOBILE operation fails if the bias voltage rises too fast, when the capacitance of the load and the driver is different due to the displacement current through the capacitance. These behaviors can be explained by considering the potential diagrams of the circuit.

  • Proposal and Analysis of a Three-Terminal Photon-Assisted Tunneling Device Operating in the Terahertz Frequency Range

    Masahiro ASADA  

     
    PAPER

      Page(s):
    1537-1542

    A three-terminal quantum device utilizing photon-assisted tunneling in a multilayer structure is proposed and analyzed in terms of its high frequency amplification characteristics. The operation principle of this device includes photonassisted tunneling at the input, formation of a propagating charge wave due to the beat of tunneling electrons and its acceleration, and radiation of electromagnetic waves at the output. Analysis of these operations, discussion of similarities and dissimilarities to classical klystrons, and estimation of the power gain and its frequency dependence are given. A simple example demonstrates that amplification up to the terahertz frequency range is possible using this device.

  • Effects of Simulated Annealing in the Resonant-Tunneling Resistive-Fuse Network for Early Vision

    Koichi MAEZAWA  

     
    PAPER

      Page(s):
    1543-1549

    The resistive-fuse network for early vision was studied using circuit simulation to clarify the potential of implementation with resonant tunneling diodes (RTDs). To over-come the fundamental problem of the RTD network, i.e., the RTDs cannot perform simulated annealing (SA), pseudo SAs were proposed. These methods are based on the time-variation of the input signal strength, and are found to be effective in restoring images. A resistive-fuse network is shown to be one of the most promising applications of RTDs.

  • The Possibility of Higher Temperature Operation in Quantum Cellular Automata (QCA)

    Tetsufumi TANAMOTO  Riichi KATOH  

     
    PAPER

      Page(s):
    1550-1556

    Quantum Cellular Automaton (QCA), which is one of the candidates for future integrable electron devices, is investigated from the viewpoint of operation temperature. The extended Hubbard model which can extract the physical essence of QCA is used to analyze the inter-cell interaction for a layered cell structure. We found that the operation energy estimated from the energy gap between the ground state and excited states of the layered structure is large enough to allow room temperature operation even if the size of quantum dot is as large as 500. The layered cell structure is found to be suitable for a memory application.

  • InGaAs/GaAs Tetrahedral-Shaped Recess Quantum Dot(TSR-QD)Technology

    Yuji AWANO  Yoshiki SAKUMA  Yoshihiro SUGIYAMA  Takashi SEKIGUCHI  Shunichi MUTO  Naoki YOKOYAMA  

     
    PAPER

      Page(s):
    1557-1561

    This paper discusses our newly developed technology for making GaAs/InGaAs/GaAs Tetrahedral-Shaped Recess (TSR) quantum dots. The heterostructures were grown by low-pressure MOVPE in tetrahedral-shaped recesses created on a (111) B oriented GaAs substrate using anisotropic chemical etching. We examined these structures by using cathodoluminescence (CL) measurements, and observed lower energy emissions from the bottoms of, and higher energy emissions from the walls of the TSRs. This suggests carrier confinement at the bottoms with the lowest potential energy. We carried out microanlaysis of the structures by using TEM and EDX, and found an In-rich region that had grown vertically from the bottom of the TSR with a (111)B-like bond configuration. We also measured a smaller diamagnetic shift of the lower energy photoluminecscence (PL) peak in the structure. Based on these results, we have concluded that the quantum dots are formed at the bottoms of TSRs, mainly because of the dependence of InAs composition on the local crystalline structure in this system. We also studied the lateral distribution and vertical alignment of TSR quantum dots by CL and PL measurements respectively. The advantages of TSR quantum dot technology can be summarized as follows: (i) better control in dot positioning in the lateral direction, (ii) realization of dot sizes exceeding limitations posed by lithography, (iii) high uniformity of dot size, and (iv) vertical alignment of quantum dots.

  • Visible Light Emission from Nanocrystalline Silicon Embedded in CaF2 Layers on Si(111)

    Masahiro WATANABE  Fumitaka IIZUKA  Masahiro ASADA  

     
    PAPER

      Page(s):
    1562-1567

    We report on the formation technique and the first observation of visible light emission from silicon nanoparticles (<10nm) embedded in CaF22 Iayers grown on Si(111) substrates by using codeposition of Si and CaF2. It is shown that the size and density of silicon particles embedded in the CaF2 layer can be controlled by varying the substrate temperature and the evaporation rates of CaF2 and Si. The photoluminescence (PL) spectra of Si nanoparticles embedded in CaF2 thin films were investigated. The blue or green light emissions obtained using a He-Cd laser (λ=325nm) could be seen with the naked eye even at room temperature for the first time. It is shown that the PL intensity strongly depends on growth conditions such as the Si:CaF2 flux ratio and the growth temperature. The PL spectra were also changed by in situ annealing process. These phenomena can be explained qualitatively by the quantum size effect of Si nanoparticles embedded in CaF2 barriers.

  • Fabrication of Quantum Wire Structures on Non-Planer InP Substrates by Molecular Beam Epitaxy

    Takeyoshi SUGAYA  Tadashi NAKAGAWA  Yoshinobu SUGIYAMA  

     
    PAPER

      Page(s):
    1568-1572

    The fabrication of InAlAs wire structures and InGaAs quantum wire structures on non-planer InP substrates with truncated ridges by molecular beam epitaxy is demonstrated. Indium-rich InAlAs epitaxial layers grown on top of ridges exhibit self-formation of electron-confining InAlAs wire structures. The InAlAs layers on top of the ridges lattice-matched to the substrate are obtained by the control of In flux during the growth. The InGaAs quantum wire structures have been fabricated on thus composition-controlled InAlAs barrier layers. The optical properties of the InGaAs quantum wires with composition-controlled InAlAs barrier layer are found to be better than that of the wires without compositional control.

  • Photoluminescence Characteristics of GaAs Nanowhis-kers: Effects of Depletion Potential

    Kensuke OGAWA  Kenji HIRUMA  Toshio KATSUYAMA  

     
    PAPER

      Page(s):
    1573-1578

    Photoluminescence characterization with a surface treatment suggests that a reduction in the radiative recombination rate of GaAs nanowhiskers is caused by charge separation in depletion potential. Good agreement is obtained between photoluminescence characteristics and calculations based on self-consistent wavefunctions confined in the depletion potential. The radiative life time of 200-nm GaAs nanowhiskers at 77 K is estimated as short as 0.5 ns if the depletion potential is completely eliminated. Weak size dependence of photoluminescence spectra at 6 K is explained as a sign of band-gap reduction induced by the depletion potential.

  • AFM Characterization of GaAs/AlGaAs Waveguides

    Kazuhiko HOSOMI  Masataka SHIRAI  Kenji HIRUMA  Junji SHIGETA  Toshio KATSUYAMA  

     
    PAPER

      Page(s):
    1579-1585

    The direct measurement of sidewall roughness on a ridge-type GaAs waveguide was performed using an atomic force microscope (AFM) combined with a scanning electron microscope (SEM). The ridge sidewall of a GaAs waveguide formed by wet-etching and the ridge sidewall formed after regrowth of a 2.45-µm GaAs/AlGaAs epitaxial layer on the same waveguide were observed using introducing the technique for sample slanting. The observed power spectral density was used to determine the scattering loss caused by the sidewall roughness. It was found that the ridge-type GaAs waveguide for light wave transmission had a scattering loss of 0.029 dB/cm in the as-etched ridge state and a scattering loss of 0.17 dB/cm after regrowing the cover GaAs/AlGaAs epitaxial layer. A leaky GaAs/AlGaAs waveguide for polariton-quantum-wave trans-mission had a scattering loss of 1.3l0-5 dB/cm, which means that the scattering loss is negligible. Furthermore, it was found that a periodical surface fluctuation (spatial frequency 2.2 µm-1) along the waveguide appeared after the regrowth of the epitaxial layer. Thus, this method is useful for direct observation of sidewall roughness and can be used to quantitatively determine the sidewall scattering loss.

  • Coulomb Blockade Effects in Edge Quantum Wire SOI-MOSFETs

    Akiko OHATA  Akira TORIUMI  

     
    PAPER

      Page(s):
    1586-1589

    The edge of a thin SOI (silicon on insulator) film was used to form a very narrow Si-MOS inversion layer. The ultra-thin SOI film was formed by local oxidation of SIMOX wafer. The thickness of the SOI film is less than 15 nm, i.e., the channel width is narrower than 15 nm. At low tempera-tures, clear and large conductance oscillations were seen in this edge channel MOSFET. These oscillations are explained by Coulomb blockade effects in the narrow channel with several effective potential barriers, since the SOI film is so thin that the channel current is seriously affected by small potential fluctuations in the channel. These results suggest that the channel current in edge quantum wire MOSFET can be cut off even with a small controlled potential change. Furthermore, we fabricated a double-gate edge channel Si-MOSFET. In this device, the channel current can be controlled in two ways. One way is to control the electron number inside the isolated electrodes. The other way is to control the threshold voltage of MOSFET. This device enables us to control the phase of Coulomb oscillation.

  • Individual Carrier Traps in GaAs/AlxGa1-xAs Heterostructures

    Toshitsugu SAKAMOTO  Yasunobu NAKAMURA  Kazuo NAKAMURA  

     
    PAPER

      Page(s):
    1590-1595

    We study individual carrier traps in a GaAs/AlxGa1-xAs heterostructure by observing random telegraph signals. A narrow channel, which is formed in a split gate device, is shifted by independently controlling the voltage applied to each part of the split gate. RTSs can be observed only when the traps are close to the channel and the energy levels of the traps are within a few kBT of the Fermi level. This type of measurement reveals the locations and the energy distributions of the traps. We also discuss the situation in which two trap levels are at the Fermi level simultaneously. In this condition the two RTSs do not occur at the same time, but they do interact with each other. This implies that there is an electrostatic interaction between the two trappings.

  • Regular Section
  • Time-Domain Sagnac Phase Reading in Open-Loop Fiber Optic Gyroscopes

    Shigeru OHO  Hisao SONOBE  Hiroshi KAJIOKA  

     
    PAPER-Opto-Electronics

      Page(s):
    1596-1601

    Time-domain characteristics of the signal of an open-loop fiber optic gyroscope were analyzed. The waveform moments of the gyroscope signal were dependent upon the rotation-induced Sagnac phase, just as the signal frequency spectra are. The peak positions of the time signal also varied with the supplied rotation, and the Sagnac phase could be read out, with optimum sensitivity, from the intervals between peaks. To demonstrate the time-domain measurement technique, the gyroscope signal was transferred to lower frequencies and the signal period was lengthened. This equivalent-time scheme lowered the operational speed requirement on the signal processing electronics and improved measurement resolution.

  • High Frequency Deflection Yoke Driving System and the Method of High Voltage Generation

    Katsuhiko SHIOMI  Takafumi NAGASUE  Yukitoshi INOUE  

     
    PAPER-Electronic Displays

      Page(s):
    1602-1607

    For high frequency video signals, display monitors for personal computers are required to shift from the horizontal scanning frequency fH=15.75 kHz for conventional TV broadcasting to fH=64 to 80 kHz, which is called XGA. Shifting to high frequencies and restrictions on the withstand voltage of horizontal transistors decrease the inductance of deflection yokes, which is an obstacle in manufacturing deflection yokes. A study was undertaken on an operation to permit deflection/high voltage integrated operation while keeping the inductance of the deflection yoke high. This paper reports the results.

  • Application of Alkaline-Earth-Metal and Rare-Earth-Element Compound-Oxide Formation Solutions to a Protective Layer for AC-type Plasma Display Panel

    Ichiro KOIWA  Takao KANEHARA  Juro MITA  

     
    PAPER-Electronic Displays

      Page(s):
    1608-1617

    We studied the application of precursor solutions that can be fired into oxides to form a protective layer for AC-type Plasma Display Panel (AC-PDP). Our study of alkoxide and metallic soap as MgO precursors revealed that the crystallinity of MgO films depends on the starting substance. Since the electric discharge characteristics of a panel and the lamination effect of the protective layer depend on precursors, it was confirmed that binders having higher crystallinity provide better characteristics. Our study revealed that a compound-oxide film has high crystallinity. The application of a Ba0.6Sr0.4Gd2O4 formation solution to a binder and the application of a Sr0.6Mg0.4Gd2O4 formation solution to a protective layer both are seemed promising We also found that a double-layer film, made by forming a protective layer of fine MgO powder and a Ba0.6Sr0.4Gd2O4 binder, on top of a protective layer made of fine MgO powder and a MgO binder, provides a luminous efficiency 5.3 times higher than that of sputtered MgO film which is one of candidates for the large panel, and the conventional electron beam evaporation is not suitable for the large panel. We further found that a triple-layer protective film made by forming a thin film of Sr0.6Mg0.4Gd2O4 provides low voltages of 1 V in firing voltage (Vf) and 35 V in sustaining voltage (Vs) compared to the double-layer film and provides a luminous efficiency 5.5 times higher than that of sputtered MgO film. A life test revealed the triple-layer film in particular providing a useful life of more than 10,000 hours. From these findings, we concluded that the compound-oxides which is composed of alkaline-earth-metal and rare-earth-element could be applied effectively to a protective layer for AC-PDP.

  • FVTD Analysis of Two-Dimensional Bended Waveguide and Horn Antenna

    Kazunori UCHIDA  Kohji SHIOTSUKI  Takeaki NODA  

     
    PAPER-Electromagnetic Theory

      Page(s):
    1618-1624

    This paper is concerned with a point-oriented finite volume time domain (FVTD) method in the Cartesian coordinate system and its application to the analysis of electro-magnetic wave propagation in a bended waveguide as well as radiation from and receiving by a horn antenna with a flange of arbitrary angle. The perfectly matched layer (PML) is used for the absorbing boundary conditions (ABC's). The boundary conditions for a perfect conductor not well suited to the Cartesian coordinate system are also proposed. According to this algorithm, the boundary conditions are satisfied in an average fashion at the conductor surface without changing the computational scheme. In this sense, numerical computations based on the present method are simple but flexible. Numerical results show good convergence.

  • An FVTD Version of Berenger Absorbing Boundary Condition for a Lossy Medium

    Kazunori UCHIDA  Kyung-Koo HAN  Kenich ISHII  Toshiaki MATSUNAGA  Gi-Rae KIM  

     
    LETTER-Electromagnetic Theory

      Page(s):
    1625-1627

    This paper is concerned with the perfectly matched layer (PML) for a lossy medium in terms of a finite volume time domain (FVTD) method based only on the Cartesian coordinate system. In this point-oriented FVTD method, there are no spatial differences between electric and magnetic fields. We can take account of the inhomogenity of the lossy medium by considering averaged material constants in each rectangular cell. Numerical examples are given for the electromagnetic wave propagation in two-dimensional tunnels with bends and branches.