The search functionality is under construction.
The search functionality is under construction.

IEICE TRANSACTIONS on Information

  • Impact Factor

    0.59

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.4

Advance publication (published online immediately after acceptance)

Volume E100-D No.11  (Publication Date:2017/11/01)

    Regular Section
  • Software Analysis Techniques for Detecting Data Race Open Access

    Pilsung KANG  

     
    SURVEY PAPER-Fundamentals of Information Systems

      Pubricized:
    2017/08/09
      Page(s):
    2674-2682

    Data races are a multithreading bug. They occur when at least two concurrent threads access a shared variable, and at least one access is a write, and the shared variable is not explicitly protected from simultaneous accesses of the threads. Data races are well-known to be hard to debug, mainly because the effect of the conflicting accesses depends on the interleaving of the thread executions. Hence there have been a multitude of research efforts on detecting data races through sophisticated techniques of software analysis by automatically analyzing the behavior of computer programs. Software analysis techniques can be categorized according to the time they are applied: static or dynamic. Static techniques derive program information, such as invariants or program correctness, before runtime from source code, while dynamic techniques examine the behavior at runtime. In this paper, we survey data race detection techniques in each of these two approaches.

  • Quantum Associative Memory with Quantum Neural Network via Adiabatic Hamiltonian Evolution

    Yoshihiro OSAKABE  Hisanao AKIMA  Masao SAKURABA  Mitsunaga KINJO  Shigeo SATO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2017/08/09
      Page(s):
    2683-2689

    There is increasing interest in quantum computing, because of its enormous computing potential. A small number of powerful quantum algorithms have been proposed to date; however, the development of new quantum algorithms for practical use remains essential. Parallel computing with a neural network has successfully realized certain unique functions such as learning and recognition; therefore, the introduction of certain neural computing techniques into quantum computing to enlarge the quantum computing application field is worthwhile. In this paper, a novel quantum associative memory (QuAM) is proposed, which is achieved with a quantum neural network by employing adiabatic Hamiltonian evolution. The memorization and retrieval procedures are inspired by the concept of associative memory realized with an artificial neural network. To study the detailed dynamics of our QuAM, we examine two types of Hamiltonians for pattern memorization. The first is a Hamiltonian having diagonal elements, which is known as an Ising Hamiltonian and which is similar to the cost function of a Hopfield network. The second is a Hamiltonian having non-diagonal elements, which is known as a neuro-inspired Hamiltonian and which is based on interactions between qubits. Numerical simulations indicate that the proposed methods for pattern memorization and retrieval work well with both types of Hamiltonians. Further, both Hamiltonians yield almost identical performance, although their retrieval properties differ. The QuAM exhibits new and unique features, such as a large memory capacity, which differs from a conventional neural associative memory.

  • An Extreme Learning Machine Architecture Based on Volterra Filtering and PCA

    Li CHEN  Ling YANG  Juan DU  Chao SUN  Shenglei DU  Haipeng XI  

     
    PAPER-Information Network

      Pubricized:
    2017/08/02
      Page(s):
    2690-2701

    Extreme learning machine (ELM) has recently attracted many researchers' interest due to its very fast learning speed, good generalization ability, and ease of implementation. However, it has a linear output layer which may limit the capability of exploring the available information, since higher-order statistics of the signals are not taken into account. To address this, we propose a novel ELM architecture in which the linear output layer is replaced by a Volterra filter structure. Additionally, the principal component analysis (PCA) technique is used to reduce the number of effective signals transmitted to the output layer. This idea not only improves the processing capability of the network, but also preserves the simplicity of the training process. Then we carry out performance evaluation and application analysis for the proposed architecture in the context of supervised classification and unsupervised equalization respectively, and the obtained results either on publicly available datasets or various channels, when compared to those produced by already proposed ELM versions and a state-of-the-art algorithm: support vector machine (SVM), highlight the adequacy and the advantages of the proposed architecture and characterize it as a promising tool to deal with signal processing tasks.

  • A Scaling and Non-Negative Garrote in Soft-Thresholding

    Katsuyuki HAGIWARA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/07/27
      Page(s):
    2702-2710

    Soft-thresholding is a sparse modeling method typically applied to wavelet denoising in statistical signal processing. It is also important in machine learning since it is an essential nature of the well-known LASSO (Least Absolute Shrinkage and Selection Operator). It is known that soft-thresholding, thus, LASSO suffers from a problem of dilemma between sparsity and generalization. This is caused by excessive shrinkage at a sparse representation. There are several methods for improving this problem in the field of signal processing and machine learning. In this paper, we considered to extend and analyze a method of scaling of soft-thresholding estimators. In a setting of non-parametric orthogonal regression problem including discrete wavelet transform, we introduced component-wise and data-dependent scaling that is indeed identical to non-negative garrote. We here considered a case where a parameter value of soft-thresholding is chosen from absolute values of the least squares estimates, by which the model selection problem reduces to the determination of the number of non-zero coefficient estimates. In this case, we firstly derived a risk and construct SURE (Stein's unbiased risk estimator) that can be used for determining the number of non-zero coefficient estimates. We also analyzed some properties of the risk curve and found that our scaling method with the derived SURE is possible to yield a model with low risk and high sparsity compared to a naive soft-thresholding method with SURE. This theoretical speculation was verified by a simple numerical experiment of wavelet denoising.

  • Depth Map Estimation Using Census Transform for Light Field Cameras

    Takayuki TOMIOKA  Kazu MISHIBA  Yuji OYAMADA  Katsuya KONDO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2017/08/02
      Page(s):
    2711-2720

    Depth estimation for a lense-array type light field camera is a challenging problem because of the sensor noise and the radiometric distortion which is a global brightness change among sub-aperture images caused by a vignetting effect of the micro-lenses. We propose a depth map estimation method which has robustness against sensor noise and radiometric distortion. Our method first binarizes sub-aperture images by applying the census transform. Next, the binarized images are matched by computing the majority operations between corresponding bits and summing up the Hamming distance. An initial depth obtained by matching has ambiguity caused by extremely short baselines among sub-aperture images. After an initial depth estimation process, we refine the result with following refinement steps. Our refinement steps first approximate the initial depth as a set of depth planes. Next, we optimize the result of plane fitting with an edge-preserving smoothness term. Experiments show that our method outperforms the conventional methods.

  • A Study of Qualitative Knowledge-Based Exploration for Continuous Deep Reinforcement Learning

    Chenxi LI  Lei CAO  Xiaoming LIU  Xiliang CHEN  Zhixiong XU  Yongliang ZHANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/07/26
      Page(s):
    2721-2724

    As an important method to solve sequential decision-making problems, reinforcement learning learns the policy of tasks through the interaction with environment. But it has difficulties scaling to large-scale problems. One of the reasons is the exploration and exploitation dilemma which may lead to inefficient learning. We present an approach that addresses this shortcoming by introducing qualitative knowledge into reinforcement learning using cloud control systems to represent ‘if-then’ rules. We use it as the heuristics exploration strategy to guide the action selection in deep reinforcement learning. Empirical evaluation results show that our approach can make significant improvement in the learning process.

  • An Investigation of Learner's Actions in Posing Arithmetic Word Problem on an Interactive Learning Environment

    Ahmad Afif SUPIANTO  Yusuke HAYASHI  Tsukasa HIRASHIMA  

     
    LETTER-Educational Technology

      Pubricized:
    2017/07/28
      Page(s):
    2725-2728

    This study investigates whether learners consider constraints while posing arithmetic word problems. Through log data from an interactive learning environment, we analyzed actions of 39 first grade elementary school students and conducted correlation analysis between the frequency of actions and validity of actions. The results show that the learners consider constraints while posing arithmetic word problems.

  • Single Image Haze Removal Using Structure-Aware Atmospheric Veil

    Yun LIU  Rui CHEN  Jinxia SHANG  Minghui WANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2017/08/04
      Page(s):
    2729-2733

    In this letter, we propose a novel and effective haze removal method by using the structure-aware atmospheric veil. More specifically, the initial atmospheric veil is first estimated based on dark channel prior and morphological operator. Furthermore, an energy optimization function considering the structure feature of the input image is constructed to refine the initial atmospheric veil. At last, the haze-free image can be restored by inverting the atmospheric scattering model. Additionally, brightness adjustment is also performed for preventing the dehazing result too dark. Experimental results on hazy images reveal that the proposed method can effectively remove the haze and yield dehazing results with vivid color and high scene visibility.

  • Weighted Voting of Discriminative Regions for Face Recognition

    Wenming YANG  Riqiang GAO  Qingmin LIAO  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/08/04
      Page(s):
    2734-2737

    This paper presents a strategy, Weighted Voting of Discriminative Regions (WVDR), to improve the face recognition performance, especially in Small Sample Size (SSS) and occlusion situations. In WVDR, we extract the discriminative regions according to facial key points and abandon the rest parts. Considering different regions of face make different contributions to recognition, we assign weights to regions for weighted voting. We construct a decision dictionary according to the recognition results of selected regions in the training phase, and this dictionary is used in a self-defined loss function to obtain weights. The final identity of test sample is the weighted voting of selected regions. In this paper, we combine the WVDR strategy with CRC and SRC separately, and extensive experiments show that our method outperforms the baseline and some representative algorithms.

  • Real-Time Object Tracking via Fusion of Global and Local Appearance Models

    Ju Hong YOON  Jungho KIM  Youngbae HWANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/08/07
      Page(s):
    2738-2743

    In this letter, we propose a robust and fast tracking framework by combining local and global appearance models to cope with partial occlusion and pose variations. The global appearance model is represented by a correlation filter to efficiently estimate the movement of the target and the local appearance model is represented by local feature points to handle partial occlusion and scale variations. Then global and local appearance models are unified via the Bayesian inference in our tracking framework. We experimentally demonstrate the effectiveness of the proposed method in both terms of accuracy and time complexity, which takes 12ms per frame on average for benchmark datasets.

  • Locomotion Control with Inverted Pendulum Model and Hierarchical Low-Dimensional Data

    Ku-Hyun HAN  Byung-Ha PARK  Kwang-Mo JUNG  JungHyun HAN  

     
    LETTER-Computer Graphics

      Pubricized:
    2017/07/27
      Page(s):
    2744-2746

    This paper presents an interactive locomotion controller using motion capture data and an inverted pendulum model (IPM). The motion data of a character is decomposed into those of upper and lower bodies, which are then dimension-reduced via what we call hierarchical Gaussian process dynamical model (H-GPDM). The locomotion controller receives the desired walking direction from the user. It is integrated into the IPM to determine the pose of the center of mass and the stance-foot position of the character. They are input to the H-GPDM, which interpolates the low-dimensional data to synthesise a redirected motion sequence on an uneven surface. The locomotion controller allows the upper and lower bodies to be independently controlled and helps us generate natural locomotion. It can be used in various real-time applications such as games.