The search functionality is under construction.

IEICE TRANSACTIONS on Information

  • Impact Factor

    0.59

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.4

Advance publication (published online immediately after acceptance)

Volume E85-D No.1  (Publication Date:2002/01/01)

    Special Issue on Measurements and Visualization Technology of Biological Information
  • FOREWORD

    Shoogo UENO  

     
    FOREWORD

      Page(s):
    1-1
  • Measurement of the Electrical Properties of Tissue--New Developments in Impedance Imaging and Spectroscopy--

    Brian BROWN  

     
    INVITED PAPER

      Page(s):
    2-4

    Human tissues conduct electricity about as well as semiconductors. However, there are large differences between tissues which have recently been shown to be determined mainly by the structure of the tissue. For example, the impedance spectrum of a layered tissue such as skin is very different to that of the underlying tissues. The way in which the cells are arranged and also the size of the nucleus are both important. Some of the recent developments in measurement and modelling techniques are described and the relationship between tissue structures and impedance spectra is outlined. The illustrations and examples look at the effect of premalignant changes on localised impedance spectra measured from cervical tissues. Electrical Impedance Tomographic measurements on lung tissue are used to show the maturational changes of lung structure in neonates. The conclusion contains some speculation as to what further research outcomes might occur over the next few years.

  • Progress in Freehand Elastography of the Breast

    Jeffrey C. BAMBER  Paul E. BARBONE  Nigel L. BUSH  David O. COSGROVE  Marvin M. DOYELY  Frank G. FUECHSEL  Paul M. MEANEY  Naomi R. MILLER  Tsuyoshi SHIINA  Francois TRANQUART  

     
    INVITED PAPER

      Page(s):
    5-14

    A digest is provided of work carried out at the Institute of Cancer Research to develop freehand elastography and apply it to breast investigations. Topics covered include the development of freehand elastography and its relationship to other methods, a description of the system for off-line clinical evaluation of the freehand method, comparison of the physical performances of freehand and mechanical elastography, early clinical results on 70 breast tumours, real-time imaging, quantitative elastography and psychophysical aspects of the detection and assessment of elastic lesions. Progress in developing this new medical imaging modality is occurring rapidly throughout the world and its future looks promising.

  • Fiber Tract Following in the Human Brain Using DT-MRI Data

    Peter J. BASSER  Sinisa PAJEVIC  Carlo PIERPAOLI  Akram ALDROUBI  

     
    INVITED PAPER

      Page(s):
    15-21

    In Vivo Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) can now be used to elucidate and investigate major nerve pathways in the brain. Nerve pathways are constructed by a) calculating a continuous diffusion tensor field from the discrete, noisy, measured DT-MRI data and then b) solving an equation describing the evolution of a fiber tract, in which the local direction vector of the trajectory is identified with the direction of maximum apparent diffusivity. This approach has been validated previously using synthesized, noisy DT-MRI data. Presently, it is possible to reconstruct large white matter structures in the brain, such as the corpus callosum and the pyramidal tracts. Several problems, however, still affect the method's reliability. Its accuracy degrades where the fiber-tract directional distribution is non-uniform, and background noise in diffusion weighted MRIs can cause computed trajectories to jump to different tracts. Nonetheless, this method can provide quantitative information with which to visualize and study connectivity and continuity of neural pathways in the central and peripheral nervous systems in vivo, and holds promise for elucidating architectural features in other fibrous tissues and ordered media.

  • A Denture Base Type of Sensor System for Simultaneous Monitoring of Hydrogen Ion Concentration pH and Tissue Temperature in the Oral Cavity

    Haruyuki MINAMITANI  Yoichiro SUZUKI  Atsuhiko IIJIMA  Tomokazu NAGAO  

     
    PAPER-Measurement Technology

      Page(s):
    22-29

    A novel sensor system of denture base type was developed for simultaneous monitoring of salivary pH and tissue temperature in the oral cavity. Fundamental components of the monitoring system, sensor devices and sensor configuration are showed in this paper. The sensor units consist of IrO2 electrode and thermistor circuit implanted in the denture base that is tightly fixed in the oral cavity. The signals are transmitted by PFM-FM telemeter system that can be used for health care of the aged people without restraint of their daily behavior while at work, sleeping and even at exercise. Some of results concerning the basic characteristics of the sensor system and continuously monitored physiological data were obtained from the preliminary experiments. Availability of the whole system and monitoring method was discussed.

  • Magnetocardiographic Imaging for Ischemic Myocardial Muscles on Rats

    Seiya UCHIDA  Kiichi GOTO  Akira TACHIKAWA  Keiji IRAMINA  Shoogo UENO  

     
    PAPER-Measurement Technology

      Page(s):
    30-35

    The purpose of our study is to estimate the imaging of ischemic myocardial muscles in rats. The magnetocardiograms (MCG) of rats were measured by a 12-channel high resolution gradiometer, which consisted of 5 mm diameter pick-up coils with a 7.5 mm distance between each coil. MCGs of seven male rats were measured in a magnetically shielded room pre and post coronary artery occlusion. The source imaging was estimated by minimum norm estimation (MNE). Changes of the current source imaging pre- and post coronary artery occlusion were clarified. As a result, in the ST segment, the current distribution significantly increased at the ischemic area. In the T wave, the direction of the current distribution clearly shifted to the left thorax. We proved that the increased area of the current distribution in the ST segment was related to the ischemic area of the ventricular muscles.

  • Discussion of Late Fields of the QRS Complex in Three-Dimensional Magnetocardiogram Based on Wavelet Transform

    Mai LIU  Yoshinori UCHIKAWA  

     
    PAPER-Measurement Technology

      Page(s):
    36-44

    An algorithm based on the wavelet transform (WT) was developed to analyze the QRS complex in a three-dimensional magnetocardiogram (3-D MCG) recorded from 3 normal subjects and 1 patient with anterior myocardial infarction (MI). By using a wavelet equivalent filter constructed with the WT algorithm, the high frequency components of the QRS complex related to the late fields (LF) were detected for the patient with anterior MI at different scale. We quantified the high frequency components of the QRS complex by calculating root-mean-square (RMS) value at different scale. The LF mainly existed in the frequency band of about 35.5 to 110.5 Hz with the amplitude of about 0.1 to 0.4 pT for Bx, By, and Bz components. In order to discuss the activities of the heart between the normal subject and the patient with anterior MI, we have also evaluated the spatial energy distribution (SED) of the QRS complex by displaying isoenergy contour maps at different scale. Being different from the normal subject, the patient with anterior MI represented different the pattern of the SED in various frequency band for the ST segment of the QRS complex of Bx, By, and Bz components. It is efficient to use the WT algorithm for analyzing the QRS complex in the 3-D MCG.

  • Experimental Investigation of 3D Velocity Vector Measurement Using Ring Array Probe

    Yusuke KAWASAKI  Naotaka NITTA  Tsuyoshi SHIINA  

     
    PAPER-Measurement Technology

      Page(s):
    45-51

    Technique of Measuring 3-D velocity vector components is important for the correct diagnosis of the blood flow pattern and quantitative assessment of intratumor perfusion. However, present equipment based on ultrasonic Doppler can not provide us true 3-D velocity. To overcome the problem, we previously proposed a new method of 3-D velocity vector measurement. The method uses 2-D array probe and enable us to obtain three components of velocity vector with real time by integrating the Doppler phase shift on the each element with the relative small single aperture compared with conventional method. Basic performance of the method has been evaluated by computer simulation. In this paper, to evaluate the feasibility of the proposed method, experimental investigation using a simple ring array probe and a phantom were carried out. Three components of velocity vector for different velocity magnitude and flow direction were measured. Experimental results validated its ability of measuring 3-D velocity and its feasibility.

  • Evaluation of the Response Function and Its Space Dependence in Chirp Pulse Microwave Computed Tomography (CP-MCT)

    Michio MIYAKAWA  Kentaroh ORIKASA  Mario BERTERO  

     
    PAPER-Measurement Technology

      Page(s):
    52-59

    In Chirp-Pulse Microwave Computed Tomography (CP-MCT) the images are affected by the blur which is inherent to the measurement principle and is described by a space-variant Point Spread Function (PSF). In this paper we investigate the PSF of CP-MCT including the space dependence both experimentally and computationally. The experimental evaluation is performed by measuring the projections of a target consisting of a thin low-loss dielectric rod surrounded by a saline solution and placed at various positions in the measuring region. On the other hand, the theoretical evaluation is obtained by computing the projections of the same target via a numerical solution of Maxwell's equations. Since CP-MCT uses a chirp signal, the numerical evaluation is carried out by the use of a FD-TD method. The projections of the rod could be obtained by computing the field during the sweep time of the chirp signal for each position of the receiving antenna. Since this procedure is extremely time consuming, we compute the impulse response function of the system by exciting the transmitting antenna with a wide-band Gaussian pulse. Then the signal transmitted in CP-MCT is obtained by computing the convolution product in time domain of the input chirp pulse with the impulse response function of the system. We find a good agreement between measured and computed PSF. The rationality of the computed PSF is verified by three distinct ways and the usefulness of this function is shown by a remarkable effect in the restoration of CP-MCT images. Knowledge on the space-variant PSF will be utilized for more accurate image deblurring in CP-MCT.

  • Motion Correction of Physiological Movements Using Optical Flow for fMRI Time Series

    Seiji KUMAZAWA  Tsuyoshi YAMAMOTO  Yoshinori DOBASHI  

     
    PAPER-Image Processing

      Page(s):
    60-68

    In functional brain images obtained by analyzing higher human brain functions using functional magnetic resonance imaging (fMRI), one serious problem is that these images depict false activation areas (artifacts) resulting from image-to-image physiological movements of subject during fMRI data acquisition. In order to truly detect functional activation areas, it is necessary to eliminate the effects of physiological movements of subject (i.e., gross head motion, pulsatile blood and cerebrospinal fluid (CSF) flow) from fMRI time series data. In this paper, we propose a method for eliminating artifacts due to not only rigid-body motion such as gross head motion, but also non-rigid-body motion like the deformation caused by the pulsatile blood and CSF flow. The proposed method estimates subject movements by using gradient methods which can detect subpixel optical flow. Our method estimates the subject movements on a "pixel-by-pixel" basis, and achieves the accurate estimation of both rigid-body and non-rigid-body motion. The artifacts are reduced by correction based on the estimated movements. Therefore, brain activation areas are accurately detected in functional brain images. We demonstrate that our method is valid by applying it to real fMRI data and that it can improve the detection of brain activation areas.

  • Registration and Superimposed Display of Coronary Arterial Tree on Bull's Eye Map of SPECT

    Ryo HARAGUCHI  Naozo SUGIMOTO  Shigeru EIHO  Yoshio ISHIDA  

     
    PAPER-Image Processing

      Page(s):
    69-76

    This paper deals with a method of registration and superimposition of a coronary arterial tree on a myocardial SPECT (Single Photon Emission Computed Tomography) image. We can grasp the myocardial function more easily in connection with the shape of the coronary arterial tree. The superimposed image is easily obtainable through some manual pointing on coronary angiograms (CAG) followed by an automatic matching method: First, a rough shape model of left ventricle is estimated by using SPECT data. This 3-D left ventricular model is projected on a pair of bi-plane CAG images. We can obtain two 2-D coronary images on bull's eye map by scanning the left ventricular surface projected on CAG. By maximizing a matching degree between two 2-D coronary images, registration between CAG and SPECT is performed. Finally the superimposed image is obtained by integrating two 2-D coronary images and bull's eye image of SPECT. We validated our method by numerical experiments with artificial data set and also applied it to two clinical data sets.

  • Visualization of Interval Changes of Pulmonary Nodules Using High-Resolution CT Images

    Yoshiki KAWATA  Noboru NIKI  Hironobu OHMATSU  Noriyuki MORIYAMA  

     
    PAPER-Image Processing

      Page(s):
    77-87

    This paper presents a method to analyze volumetrically evolutions of pulmonary nodules for discrimination between malignant and benign nodules. Our method consists of four steps; (1) The 3-D rigid registration of the two successive 3-D thoracic CT images, (2) the 3-D affine registration of the two successive region-of-interest (ROI) images, (3) non-rigid registration between local volumetric ROIs, and (4) analysis of the local displacement field between successive temporal images. In the preliminary study, the method was applied to the successive 3-D thoracic images of two pulmonary nodules including a metastasis malignant nodule and a inflammatory benign nodule to quantify evolutions of the pulmonary nodules and their surrounding structures. The time intervals between successive 3-D thoracic images for the benign and malignant cases were 150 and 30 days, respectively. From the display of the displacement fields and the contrasted image by the vector field operator based on the Jacobian, it was observed that the benign case reduced in the volume and the surrounding structure was involved into the nodule. It was also observed that the malignant case expanded in the volume. These experimental results indicate that our method is a promising tool to quantify how the lesions evolve their volume and surrounding structures.

  • Proposal of a Nodule Density-Enhancing Filter for Plain Chest Radiographs on the Basis of the Thoracic Wall Outline Detected by Hough Transformation

    Tetsuo SHIMADA  Naoki KODAMA  Hideya SATOH  Kei HIWATASHI  Takuya ISHIDA  Yoshitaka NISHIMURA  Ichiroh FUKUMOTO  

     
    PAPER-Image Processing

      Page(s):
    88-95

    In screening for primary lung cancer with plain chest radiography, computer-aided diagnosis systems are being developed to reduce chest radiologists' task and the risk of missing positive cases. We evaluated a difference filter that enhances nodule densities in the preprocessing of chest X-ray images. Since ribs often affect detection of pulmonary nodules, we designed an eye-shaped filter to fit the rib shape. Although this filter increased the nodule detection rate, it could not detect nodules near the thoracic wall. The thoracic wall was then outlined by computers with Hough transformation for line detection. On the basis of the outline, the direction of the eye-shaped filter was determined. With this technique, the filter was not affected by considerable changes in the shape of anatomical structures, such as ribs and the thoracic wall, and could detect pulmonary nodules regardless of their location.

  • Detection of Calcifications in Digitized Mammograms Using Modification of Wavelet Packet Transform Coefficients

    Werapon CHIRACHARIT  Kosin CHAMNONGTHAI  

     
    PAPER-Image Processing

      Page(s):
    96-107

    This paper presents a method for detection of calcification, which is an important early sign of breast cancer in mammograms. Since information of calcifications is located in inhomogeneous background and noises, it is hard to be detected. This method uses wavelet packet transform (WPT) for elimination of the background image related to low frequency components. However, very high frequency signals of noises exist with the calcifications and make it hard to suppress them. Since calcification location can be represented as vertical, horizontal, and diagonal edges in time-frequency domain, the edges in spatial domain can be utilized as a filter for noise suppression. Then the image from inverse transform will contain only required information. A free-response operating characteristic (FROC) curve is used to evaluate a performance of proposed method by applying it to thirty images of calcifications. The results show 82.19 percent true positive detection rate at the cost of 6.73 false positive per image.

  • A Lossless Image Compression for Medical Images Based on Hierarchical Sorting Technique

    Atsushi MYOJOYAMA  Tsuyoshi YAMAMOTO  

     
    PAPER-Image Processing

      Page(s):
    108-114

    We propose new lossless medical image compression method based on hierarchical sorting technique. Hierarchical sorting is a technique to achieve high compression ratio by detecting the regions where image pattern varies abruptly and sorting pixel order by its value to increase predictability. In this method, we can control sorting accuracy along with size and complexity. As the result, we can reduce the sizes of the permutation-tables and reuse the tables to other image regions. Comparison using experimental implementation of this method shows better performance for medical image set measured by X-ray CT and MRI instruments where similar sub-block patterns appear frequently. This technique applies quad-tree division method to divide an image to blocks in order to support progressive decoding and fast preview of large images.

  • A 200-Channel Imaging System of Muscle Oxygenation Using CW Near-Infrared Spectroscopy

    Masatsugu NIWAYAMA  Katsuyuki YAMAMOTO  Daisuke KOHATA  Kosuke HIRAI  Nobuki KUDO  Takafumi HAMAOKA  Ryotaro KIME  Toshihito KATSUMURA  

     
    PAPER-Optical Imaging

      Page(s):
    115-123

    We have developed a 200-channel imaging system that enables measurement of changes in oxygenation and blood volume and that covers a wider area (45 cm 15 cm) than that covered by conventional systems. This system consisted of 40 probes of five channels, a light-emitting diode (LED) driver, multiplexers and a personal computer. Each probe was cross-shaped and consisted of an LED, five photo diodes, and a current-to-voltage (I-V) converter. Lighting of the LEDs and acquisition of 200-channel data were time-multiplexed. The minimum data acquisition time for 200 channels, including the time required for calculation of oxygenation and monitoring of a few traces of oxygenation on a computer display, was about 0.2 s. We carried out exercise tests and measured the changes in oxy- and deoxy-hemoglobin concentrations in the thigh. Working muscles in exercises could be clearly imaged, and spatio-temporal changes in muscle oxygenation during exercise and recovery were also shown. These results demonstrated that the 200-channel imaging system enables observation of the distribution of muscle metabolism and localization of muscle function.

  • Cross-Sectional Imaging of Absorption Distribution in Biological Tissue Using Backscattered Light

    Aki AWATA  Yuji KATO  Koichi SHIMIZU  

     
    PAPER-Optical Imaging

      Page(s):
    124-132

    A technique was developed to reconstruct the cross-sectional image of the absorption distribution in a diffuse medium using backscattered light. In this technique, we illuminate an object with an ultra-short pulse, and measure the time-resolved pulse shape of the light backscattered from the object. The absorption distribution of the scattering object can be estimated using the propagation-path distribution of photons at each detection time and the optical impulse response of backscattered light. In a simulation, the effectiveness of this technique was verified in the cases of a layered absorber and a three dimensional absorber. The nonlinear relationship between the depth of the probing region and the propagation time was clarified. The accuracy of the image reconstruction was significantly improved by the aperiodic sampling of the backscattered impulse response according to the nonlinear relation. The feasibility of the proposed technique was verified in the experiment with a model phantom.

  • Time-Resolved Diffuse Optical Tomography Using a Modified Generalized Pulse Spectrum Technique

    Feng GAO  Huijuan ZHAO  Yukari TANIKAWA  Yukio YAMADA  

     
    PAPER-Optical Imaging

      Page(s):
    133-142

    Generalized Pulse Spectrum Technique (GPST) is a method to solve the inverse problems of wave-propagation and diffusion-dominated phenomena, and therefore has been popularly applied in image reconstruction of time-resolved diffuse optical tomography. With a standard GPST for simultaneous reconstruction of absorption and scattering coefficients, the products of the gradients of the Green's function and the photon-density flux, based on the photon-diffusion equation, are required to calculate the diffusion-related Jacobian matrix. The adversities are of two-folds: time-consuming and singular in the field near the source. The latter causes a severe insensitivity of the algorithm to the scattering changes deep inside tissue. To cope with the above difficulties, we propose in this paper a modified GPST algorithm that only involves the Green's function and the photon-density flux themselves in the scattering-related matrix. Our simulated and experimental reconstructions show that the modified algorithm can significantly improve the quality of scattering image and accelerate the reconstruction process, without an evident degradation in absorption image.

  • Functional Mapping of Optically Detected Neural Activity onto a Standardized Cortical Structure of Rodent Barrels

    Ichiro TAKASHIMA  Riichi KAJIWARA  Toshio IIJIMA  

     
    PAPER-Optical Imaging

      Page(s):
    143-151

    The concept of a "standardized brain" is familiar in modern functional neuro-imaging techniques including PET and fMRI, but it has never been adopted for optical imaging studies that deal with a regional cortical area rather than the whole brain. In this paper, we propose a "standardized barrel cortex" for rodents, and present a method for mapping optically detected neural activity onto the standard cortex. The standard cortex is defined as a set of simple cortical columns, which are modeled on the cytoarchitectonic patterns of cell aggregates in cortical layer IV of the barrel cortex. Referring to its underlying anatomical structure, the method warps the surface image of individual cortices to fit the standard cortex. The cortex is warped using a two-dimensional free-form deformation technique with direct manipulation. Since optical imaging provides a map of neural activity on the cortical surface, the warping consequently remaps it on the standard cortex. Data presented in this paper show that somatosensory evoked neural activity is successfully represented on the standardized cortex, suggesting that the combination of optical imaging with our method is a promising approach for investigating the functional architecture of the cortex.

  • Quantitative Analysis for Intracellular Distribution of a Photosensitizer Using Confocal Laser Scanning Microscope

    Tomokazu NAGAO  Kazuki MATSUZAKI  Miho TAKAHASHI  Yoshiharu IMAZEKI  Haruyuki MINAMITANI  

     
    PAPER-Cellular Imaging

      Page(s):
    152-159

    Confocal laser scanning microscope (CLSM) is capable of delivering a high axial resolution, and with this instrument even thin layers of cells can be imaged in good quality. Therefore, intracellular uptake and distribution properties of photosensitizer zinc coproporphyrin III tetrasodium salt (Zn CP-III) in human lung small cell carcinoma (Ms-1) were examined by using CLSM. In particular, the uptake of Zn CP-III in cytoplasm, plasma membrane, and nucleus was individually evaluated for the first time from fluorescence images obtained by CLSM. The results show that the Zn CP-III content in three cellular areas correlates with extracellular Zn CP-III concentration and time of incubation with Zn CP-III. Furthermore, it was found that the cytoplasmic fluorescence was approximately two times higher than that in the nucleus under all uptake conditions. In addition, cellular accumulation of Zn CP-III was compared with photodynamic cytotoxicity. The photocytotoxicity was to a great extent dependent on the uptake of the photosensitizer. The damaged site of Ms-1 cells induced by photodynamic therapy was plasma membrane. However, the content of Zn CP-III accumulated in cytoplasm was the highest among the three areas, implying that, besides the direct damage on plasma membrane, an oxidative damage to cellular component arose from the cytoplasmic Zn CP-III may also play an important role in photocytotoxicity. The quantitative information obtained in this study will be useful for further investigation of the photocytotoxicity as well as the uptake mechanism of photosensitizer.

  • Fluorescence Image Analysis for Quantification of Reactive Oxygen Species Derived from Monocytes Activated by Photochemical Reaction

    Miho TAKAHASHI  Tomokazu NAGAO  Yoshiharu IMAZEKI  Kazuki MATSUZAKI  Haruyuki MINAMITANI  

     
    PAPER-Cellular Imaging

      Page(s):
    160-166

    This study attempts to demonstrate that activated leukocytes are involved in vascular shut down effect (VSD) in photodynamic therapy (PDT). Hydrogen peroxide (H2O2), a reactive oxygen specie (ROS) that is found in monocytes, was visualized under a confocal laser scanning microscope, and ROS formation was quantified by fluorescence image analysis. The fluorescence intensity was expressed as a gray level graded from 0 to 255. Only the fluorescence derived from monocytes that had ZnCP-III incorporated and were irradiated with an HeNe laser caused increases in the fluorescence distribution over time, while no change of distribution was observed in three other conditions (only Zn CP-III added, only HeNe laser irradiation, or non-treated). The result indicates that the photochemical reaction induced by excitation of a photosensitizer, and ROS was derived from the reaction-stimulated monocytes. The activated monocytes generated ROS themselves and H2O2 was visualized by the DCFH fluorescence method. In conclusion, the result clearly shows that activated monocytes are involved in the VSD effect.

  • MEG Source Estimation Using the Fourth Order MUSIC Method

    Satoshi NIIJIMA  Shoogo UENO  

     
    PAPER-Inverse Problem

      Page(s):
    167-174

    In recent years, several inverse solutions of magnetoencephalography (MEG) have been proposed. Among them, the multiple signal classification (MUSIC) method utilizes spatio-temporal information obtained from magnetic fields. The conventional MUSIC method is, however, sensitive to Gaussian noise and a sufficiently large signal-to-noise ratio (SNR) is required to estimate the number of sources and to specify the precise locations of electrical neural activities. In this paper, a new algorithm for solving the inverse problem using the fourth order MUSIC (FO-MUSIC) method is proposed. We apply it to the MEG source estimation problem. Numerical simulations demonstrate that the proposed FO-MUSIC algorithm is more robust against Gaussian noise than the conventional MUSIC algorithm.

  • Visualization of the Brain Activity during Mental Rotation Processing Using MUSIC-Weighted Lead-Field Synthetic Filtering

    Sunao IWAKI  Mitsuo TONOIKE  Shoogo UENO  

     
    PAPER-Inverse Problem

      Page(s):
    175-183

    In this paper, we propose a method to reconstruct current distributions in the human brain from neuromagnetic measurements. The proposed method is based on the weighted lead-field synthetic (WLFS) filtering technique with the weighting factors calculated from the results of previous source space scanning. In this method, in addition to the depth normalization technique, weighting factors of the WLFS are determined by the cost values previously calculated based on the multiple signal classification (MUSIC) scan. We performed computer simulations of this method under noisy measurement conditions and compared the results to those obtained with the conventional WLFS method. The results of the simulations indicate that the proposed method is effective for the reconstruction of the current distributions in the human brain using magnetoencephalographic (MEG) measurements, even if the signal-to-noise ratio of the measured data is relatively low. We applied the proposed method to the magnetoencephalographic data obtained during a mental image processing task that included object recognition and mental rotation operations. The results suggest that the proposed method can extract the neural activity in the extrastriate visual region and the parietal region. These results are in agreement with the results of previous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies.

  • Estimation of Threshold for Peripheral Nerve Excitation in Respect of Geometry of Figure-of-Eight Coil in Magnetic Nerve Stimulation

    Osamu HIWAKI  Hiroshi KUWANO  

     
    PAPER-Modeling

      Page(s):
    184-189

    In the magnetic stimulation of the peripheral nerve fiber with the figure-of-eight coil, the nerve fiber beneath the figure-of-eight coil is considered to be stimulated with the lowest intensity when it is parallel to the junction of the figure-of-eight coil. However, some experimental studies with the magnetic peripheral stimulation showed that the large compound muscle action potential is elicited with the figure-of-eight coil oriented in the other directions. In the present study, we try to explain the cause of such a discrepancy with the analysis of the model of the magnetic nerve stimulation, and confirm the validity of the result obtained from the model analysis by the experimental study of the magnetic peripheral nerve stimulation. We show that the threshold for the nerve excitation become lowest not only when the junction of the figure-of-eight coil is parallel to the nerve fiber but also when that is perpendicular to the nerve fiber.

  • Edge Enhancement of Ultrasonic Images by Morphological Operations Based on Locally Variable Structuring Elements

    Masayoshi TSUBAI  Masayasu ITO  

     
    PAPER-Modeling

      Page(s):
    190-198

    Edge enhancement of noisy ultrasound images is important for medical diagnosis. Conventional edge enhancement methods are mainly directed to emphasizing the high-frequency components of the image. Because these methods emphasize also the noise of image, they are not suitable for noisy ultrasound images with speckle noise. In this paper, we propose an edge enhancement method using mathematical morphology based on a geometrical characteristics of the image, using locally variable structuring elements. We show that the proposed method enhances the edge of ultrasound images without noise emphasis.

  • Modeling and Simulation of Frequency Response of Nerve-Muscle

    Atsuo NURUKI  Keita TANAKA  Gang WANG  Kazutomo YUNOKUCHI  

     
    LETTER

      Page(s):
    199-202

    We applied control theory to nerve-muscle in order to model and systematize the muscle system. The association between nerve stimulation frequencies and electromyogram (EMG) amplitude was studied in rat nerve-muscle under normal and hypokalemic conditions. From these results, we modeled the nerve-muscle and simulated frequency response from the nerve-muscle system which can be expressed as a closed loop transfer function.

  • Regular Section
  • Initial Conditions Solving the Leader Election Problem by Randomized Algorithms

    Naoshi SAKAMOTO  

     
    PAPER-Algorithms

      Page(s):
    203-213

    When a randomized algorithm elects a leader on anonymous networks, initial information (which is called in general initial condition in this paper) of some sort is always needed. In this paper, we study common properties of initial conditions that enable a randomized algorithm to elect a leader. In the previous papers, the author introduced the notion of transformation between initial conditions using distributed algorithms. By using this notion of transformation, we investigate the property of initial conditions for the leader election. We define that an initial condition C is p(N)-complete if there exists some randomized algorithm that elects a leader with probability p(N) on any size N network satisfying C. We show that we can divide p(N)-completeness into four types as follows. 1. p(N)=1: For any 1-complete initial conditions, there exists a deterministic distributed algorithm that can compute the size of the network for any initial information satisfying the initial condition. 2. inf p(N) >0: For any p(N)-complete initial conditions with inf p(N) >0, there exists a deterministic distributed algorithm that can compute an upper-bound for the size of the network for any initial information satisfying the initial condition. 3. inf p(N) converges to 0: The set of p(N)-complete initial conditions varies depending on the decrease rate of p(N). 4. p(N) decreases exponentially: Any initial condition is regarded as p(N)-complete.

  • Measuring the Degree of Reusability of the Components by Rough Set and Fuzzy Integral

    WanKyoo CHOI  IlYong CHUNG  SungJoo LEE  

     
    PAPER-Software Engineering

      Page(s):
    214-220

    There were researches that measured effort required to understand and adapt components based on the complexity of the component, which is some general criterion related to the intrinsic quality of the component to be adapted and understood. They, however, don't consider significance of the measurement attributes and user must decide reusability of similar components for himself. Therefore, in this paper, we propose a new method that can measure the DOR (Degree Of Reusability) of the components by considering the significance of the measurement attributes. We calculates the relative significance of them by using rough set and integrate the significance with the measurement value by using Sugeno's fuzzy integral. Lastly, we apply our method to the source code components and show through statistical technique that it can be used as the ordinal and ratio scale.

  • Software Creation: Clich as Intermediate Knowledge in Software Design

    Hassan ABOLHASSANI  Hui CHEN  Zenya KOONO  

     
    PAPER-Software Engineering

      Page(s):
    221-232

    This paper reports on clich and related mechanisms appearing in a process of human design of software. During studies on human design knowledge, the authors found frequent instance of same pattern of detailing, named clich. In our study, clich is an intermediate level of design knowledge, during a hierarchical detailing step, residing in between simple reuse and creation by micro design rules, which have already been reported. These three kinds of design knowledge are of various types and have different complexities. Discussions on them, focusing on clich type, with procedures of formation of a simple clich skeleton and generation of a clich are given. The studies show a working model of Zipf's principle, and are some trials to reveal a more detail of human designs.

  • A New Approach to Estimate Effort to Update Object-Oriented Programs in Incremental Development

    Satoru UEHARA  Osamu MIZUNO  Tohru KIKUNO  

     
    PAPER-Software Engineering

      Page(s):
    233-242

    In this paper we discuss the estimation of effort needed to update program codes according to given design specification changes. In the Object-Oriented incremental development (OOID), the requirement changes occur frequently and regularly. When a requirement change occurs, a design specification is changed accordingly. Then a program code is updated for given design specification change. In order to construct the development plan dynamically, a simple and fast estimation method of efforts for code updating is strongly required by both developers and managers. However, existing estimation methods cannot be applied to the OOID. We therefore try to propose a straightforward approach to estimate effort for code updating, which reflects the specific properties of the OOID. We list up following factors of the effort estimation for OOID: (1) updating activities consist of creation, deletion, and modification, (2) the target to be updated has four kinds of types (void type, basic type, library type, and custom type), (3) the degree of information hiding is classified into private, protected and public, and (4) the degree of inheritance affects updating efforts. We then propose a new formula E(P,σ) to calculate the efforts needed to update a program P according to a set of design specification changes σ. The formula E(P,σ) includes weighting parameters: Wupd, Wtype, Winf-h and Winht according to the characteristics (1), (2), (3) and (4), respectively. Finally, we conduct experimental evaluations by applying the formula E(P,σ) to actual project data in a certain company. The evaluation results statistically showed the validity of the proposed approach to some extent.

  • From Intraspecific Learning to Interspecific Evolution by Genetic Programming

    Akira YOSHIDA  

     
    PAPER-Artificial Intelligence, Cognitive Science

      Page(s):
    243-254

    Spatial dynamic pattern formations or trails by organisms attract us, which remind us chaos and fractal. They seem to show the emergence of co-operation, job separation, or division of territories when genetic programming controls the reproduction, mutation, crossing over of the organisms. Recent research in social insect behavior suggests that swarm intelligence comes from pheromone or chemical trails, and models based on self-organization can help explain how colony-level behavior emerges out of interactions among individual insects. We try to explain the co-operative behaviors of social insect by means of density of organisms and their interaction with environment in simple simulations. We also study that MDL-based fitness evaluation is effective for improvement of generalization of genetic programming. At last, interspecific and intraspecific mathematical models are examined to expand our research into interspecific evolution.

  • Complexity Scalability for ACELP and MP-MLQ Speech Coders

    Fu-Kun CHEN  Jar-Ferr YANG  Yu-Pin LIN  

     
    PAPER-Speech and Hearing

      Page(s):
    255-263

    For multimedia communications, the computational scalability of a multimedia codec is required to match with different working platforms and integrated services of media sources. In this paper, two condensed stochastic codebook search approaches are proposed to progressively reduce the computation required for the algebraic code excited linear predictive (ACELP) and multi-pulse maximum likelihood quantization (MP-MLQ) coders. By reducing the candidates of the codebook before search procedure, the proposed methods can effectively diminish the computation required for the ITU-T G.723.1 dual rate speech coder. Simulation results show that the proposed methods can save over 50 percent for the stochastic codebook search with perceptually intangible degradation in speech quality.

  • Mobile Robot Navigation by Wall Following Using Polar Coordinate Image from Omnidirectional Image Sensor

    Tanai JOOCHIM  Kosin CHAMNONGTHAI  

     
    PAPER-Image Processing, Image Pattern Recognition

      Page(s):
    264-274

    In order to navigate a mobile robot or an autonomous vehicle in indoor environment, which includes several kinds of obstacles such as walls, furniture, and humans, the distance between the mobile robot and the obstacles have to be determined. These obstacles can be considered as walls with complicated edges. This paper proposes a mobile-robot-navigation method by using the polar coordinate transformation from an omnidirectional image. The omnidirectional image is obtained from a hyperboloidal mirror, which has the prominent feature in sensing the surrounding image at the same time. When the wall image from the camera is transformed by the transformation, the straight lines between the wall and the floor appear in the curve line after transformation. The peak point represents the distance and the direction between the robot and the wall. In addition, the wall types can be classified by the pattern and number of peak points. They are one side wall, corridor and corner. To navigate the mobile robot, in this paper, it starts with comparing a peak point obtained from the real image with the reference point determined by designed distance and direction. If there is a difference between the two points, the system will compute appropriate wheel angle to adjust the distance and direction against the wall by keeping the peak point in the same position as the reference point. The experiments are performed on the prototype mobile robot. The results show that for the determining distance from the robot to the wall between 70-290 cm, the average error is 6.23 percent. For three types of the wall classification, this method can correctly classify 86.67 percent of 15 image samples. In the robot movement alongside the wall, the system approximately consumes the 3 frame/s processing time at 10 cm/s motion speed. The mobile robot can maintain its motion alongside the wall with the average error 12 cm from reference distance.

  • Visualization of Inheritance Relationships Using Glyphs

    Noritaka OSAWA  

     
    PAPER-Computer Graphics

      Page(s):
    275-282

    This paper describes glyph representation, that is, shape representation of inheritance relationships between a superclass and subclasses in an object-oriented programming language. The inheritance relationships in object-oriented programming languages are usually represented in a visual programming environment by a diagram of a tree graph or a nested structure. That diagram is not integrated with a code view showing control and data flows. Using the proposed representation, one can understand the inheritance relationships of classes and the assignment compatibility or type conformance just by seeing the glyphs. One thus does not need to look at a hierarchy diagram in order to recognize them. The inheritance relationships are represented by inclusion relationships of glyphs. Methods for generating suitable glyphs from a class hierarchy are also described, as is a prototype system for glyph generation. Experiments using the Java 2 Standard Edition (J2SE), which has more than 1,500 classes, show that one can recognize inheritance relationships in the proposed representation faster than in the usual textual representation. Consequently the proposed representation can facilitate the understanding of inheritance in visual object-oriented programming environments.

  • Bark Coherence Function for Speech Quality Evaluation over CDMA System

    Sang-Wook PARK  Seung-Kyun RYU  Dae-Hee YOUN  

     
    LETTER-Speech and Hearing

      Page(s):
    283-285

    A new objective speech quality measure, Bark Coherence Function is presented. The Coherence Function was used for evaluating the non-linear distortion of low-to-medium rate speech coders. However, it is not well suited for quality estimation in modern speech transmission, especially, CDMA mobile communication system. In the proposed method, Coherence Function is newly defined in psycho-acoustic domain as the cognition module of perceptual speech quality measure and evaluates the perceptual non-linear distortion of mobile system. The experimental results showed that the proposed method has good performance over CDMA PCS and digital cellular system.

  • Region-Adaptive Image Restoration Using Wavelet Denoising Technique

    Jianyin LU  Yasuo YOSHIDA  

     
    LETTER-Image Processing, Image Pattern Recognition

      Page(s):
    286-290

    Space-variant approaches subject to local image characteristics are useful in practical image restoration because many natural images are nonstationary. Motivated by the success of denoising approaches in the wavelet domain, we propose a region-adaptive restoration approach which adopts a wavelet denoising technique in flat regions after an under-regularized constrained least squares restoration. Experimental results verify that this approach not only improves image quality in mean square error but also contributes to ringing reduction.

  • Image Enhancement with Attenuated Blocking Artifact in Transform Domain

    Sung Kon OH  Jeong Hyun YOON  Yong Man RO  

     
    LETTER-Image Processing, Image Pattern Recognition

      Page(s):
    291-297

    Image processing in transform domain has many advantages but it could be suffered from local effects such as a blocking artifact. In this paper, an image processing is performed by weighting coefficients in the compressed domain, i.e., filtering coefficients are appropriately selected according to the processing. Since we find the appropriate factors according to global image enhancement, blocking artifacts are reduced between inter-blocks. Experimental results show that the proposed technique has the advantages of simple computation and easy implementation.

  • Enhancement of the Contrast in Mammographic Images Using the Homomorphic Filter Method

    Jeong Hyun YOON  Yong Man RO  

     
    LETTER-Medical Engineering

      Page(s):
    298-303

    The use of the homomorphic filter technique is described in order to enhance the contrast in the mammographic images, which is adopted to the dyadic wavelet transform. The proposed method has employed the nonlinear enhancement in homomorphic filtering as well as denoising method in the wavelet domains. Experimental results show that the homomorphic filtering method improves the contrast in breast tumor images such that the contrast improvement index is increased by two fold compared to the conventional wavelet-based enhancement technique.