The search functionality is under construction.
The search functionality is under construction.

IEICE TRANSACTIONS on Electronics

  • Impact Factor

    0.63

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.3

Advance publication (published online immediately after acceptance)

Volume E82-C No.6  (Publication Date:1999/06/25)

    Special Issue on TCAD for Semiconductor Industries
  • FOREWORD

    Mitiko MIURA-MATTAUSCH  

     
    FOREWORD

      Page(s):
    789-790
  • TCAD--Yesterday, Today and Tomorrow

    Robert W. DUTTON  

     
    INVITED PAPER

      Page(s):
    791-799

    This paper outlines the modeling requirements of integrated circuit (IC) fabrication processes that have lead to and sustained the development of computer-aided design of technology (i. e. TCAD). Over a period spanning more than two decades the importance of TCAD modeling and the complexity of required models has grown steadily. The paper also illustrates typical applications where TCAD has been powerful and strategic to IC scaling of processes. Finally, the future issues of atomic-scale modeling and the need for an hierarchical approach to capture and use such detailed information at higher levels of simulation are discussed.

  • Modeling of Dopant Diffusion in Silicon

    Scott T. DUNHAM  Alp H. GENCER  Srinivasan CHAKRAVARTHI  

     
    INVITED PAPER

      Page(s):
    800-812

    Recent years have seen great advances in our understanding and modeling of the coupled diffusion of dopants and defects in silicon during integrated circuit fabrication processes. However, the ever-progressing shrinkage of device dimensions and tolerances leads to new problems and a need for even better models. In this review, we address some of the advances in the understanding of defect-mediated diffusion, focusing on the equations and parameters appropriate for modeling of dopant diffusion in submicron structures.

  • Modeling of Channel Boron Distribution in Deep Sub-0.1 µm n-MOSFETs

    Shigetaka KUMASHIRO  Hironori SAKAMOTO  Kiyoshi TAKEUCHI  

     
    PAPER

      Page(s):
    813-820

    This paper reports the evaluation results of the channel boron distribution in the deep sub-0.1 [µm] n-MOSFETs for the first time. It has been found that the boron depletion effect becomes dominant and the reverse short channel effect becomes less significant in the deep sub-0.1 [µm] n-MOSFETs. It has been also found that the sheet charge distribution responsible for the reverse short channel effect is localized within a distance of 100 [nm] from the source/drain-extension junction.

  • METROPOLE-3D: An Efficient and Rigorous 3D Photolithography Simulator

    Andrzej J. STROJWAS  Xiaolei LI  Kevin D. LUCAS  

     
    INVITED PAPER

      Page(s):
    821-829

    In this paper we present a rigorous vector 3D lithography simulator METROPOLE-3D which is designed to run moderately fast on conventional engineering workstations. METROPOLE-3D solves Maxwell's equations rigorously in three dimensions to model how the non-vertically incident light is scattered and transmitted in non-planar structures. METROPOLE-3D consists of several simulation modules: photomask simulator, exposure simulator, post-exposure baking module and 3D development module. This simulator has been applied to a wide range of pressing engineering problems encountered in state-of-the-art VLSI fabrication processes, such as layout printability/manufacturability analysis including reflective notching problems and optimization of an anti-reflective coating (ARC) layer. Finally, a 3D contamination to defect transformation study was successfully performed using our rigorous simulator.

  • Mechanical Stress Simulation for Highly Reliable Deep-Submicron Devices

    Hideo MIURA  Shuji IKEDA  

     
    INVITED PAPER

      Page(s):
    830-838

    We have improved the mechanical reliability of deep-submicron semiconductor devices by applying a simulation technique. Typical kinds of damages that reduce the reliability are dislocations in silicon substrates, delamination or cracking of thin films, and deterioration of electronic characteristics of devices. The mechanical stress that develops in device structures is caused by not only mismatches in thermal expansion coefficients among thin film materials but also intrinsic stress of thin films such as poly-silicon and silicides. Fine patterning by dry etching makes sharp edges and they also cause stress concentration and thus high stress. The manufacturing processes in which stress mainly develops are isolation, gate formation, and interconnect formation. We have developed methods for reducing the stress in each of the above-mentioned process. This stress reduction is very effective for highly reliable manufacturing. Finally, we clarify the effect of the residual stress in transistor structures on shift in the electronic characteristics of MOS transistors.

  • Design and Development of 3-Dimensional Process Simulator

    Tetsunori WADA  Norihiko KOTANI  

     
    INVITED PAPER

      Page(s):
    839-847

    Design concepts and backgrounds of a 3-dimensional semiconductor process simulator are presented. It is designed to become a basis of developing semiconductor process models. An input language is designed to realize flexibly controlling simulation sequence, and its interpreter program is designed to accept external software to be controlled and to be integrated into a system. To realize data-exchanges between the process simulator and other software, a self-describing data-file format is designed and related program libraries are developed. A C++ class for solving drift-diffusion type partial-differential-equation in a three-dimensional space is developed.

  • 3-D Topography and Impurity Integrated Process Simulator (3-D MIPS) and Its Applications

    Masato FUJINAGO  Tatsuya KUNIKIYO  Tetsuya UCHIDA  Eiji TSUKUDA  Kenichiro SONODA  Katsumi EIKYU  Kiyoshi ISHIKAWA  Tadashi NISHIMURA  Satoru KAWAZU  

     
    PAPER

      Page(s):
    848-861

    We have developed a practical 3-D integrated process simulator (3-D MIPS) based on the orthogonal grid. 3-D MIPS has a 3-D topography simulator (3-D MULSS) and 3-D impurity simulator which simulates the processes of ion implantation, impurity diffusion and oxidation. In particular, its diffusion and segregation model is new and practical. It assumes the continuity of impurity concentration at the material boundary in order to coordinate with the topography simulator (3-D MULSS) with cells in which two or more kinds of materials exist. And then, we introduced a time-step control method using the Dufort-Frankel method of diffusion analysis for stable calculation, and a selective oxidation model to apply to more general structures than LOCOS structure. After that, the 3-D MIPS diffusion model is evaluated compared with experimental data. Finally, the 3-D MIPS is applied to 3-D simulations of the nMOS Tr. structure with LOCOS isolation, wiring interconnect and pn-junction capacitances, and DRAM storage node area.

  • Inverse Modeling and Its Application to MOSFET Channel Profile Extraction

    Hirokazu HAYASHI  Hideaki MATSUHASHI  Koichi FUKUDA  Kenji NISHI  

     
    INVITED PAPER

      Page(s):
    862-869

    We propose a new inverse modeling method to extract 2D channel dopant profile in an MOSFET. The profile is extracted from threshold voltage (Vth) of MOSFETs with a series of gate lengths. The uniqueness of the extracted channel and drain profile is confirmed through test simulations. The extracted profile of actual 0.1 µm nMOSFETs explains reverse short channel effects (RSCE) of threshold voltage dependent on gate length including substrate bias dependence.

  • Efficient Full-Band Monte Carlo Simulation of Silicon Devices

    Christoph JUNGEMANN  Stefan KEITH  Martin BARTELS  Bernd MEINERZHAGEN  

     
    INVITED PAPER

      Page(s):
    870-879

    The full-band Monte Carlo technique is currently the most accurate device simulation method, but its usefulness is limited because it is very CPU intensive. This work describes efficient algorithms in detail, which raise the efficiency of the full-band Monte Carlo method to a level where it becomes applicable in the device design process beyond exemplary simulations. The k-space is discretized with a nonuniform tetrahedral grid, which minimizes the discretization error of the linear energy interpolation and memory requirements. A consistent discretization of the inverse mass tensor is utilized to formulate efficient transport parameter estimators. Particle scattering is modeled in such a way that a very fast rejection technique can be used for the generation of the final state eliminating the main cause of the inefficiency of full-band Monte Carlo simulations. The developed full-band Monte Carlo simulator is highly efficient. For example, in conjunction with the nonself-consistent simulation technique CPU times of a few CPU minutes per bias point are achieved for substrate current calculations. Self-consistent calculations of the drain current of a 60nm-NMOSFET take about a few CPU hours demonstrating the feasibility of full-band Monte Carlo simulations.

  • Quantum Transport Modeling of Ultrasmall Semiconductor Devices

    Hideaki TSUCHIYA  Tanroku MIYOSHI  

     
    INVITED PAPER

      Page(s):
    880-888

    With the progress of LSI technology, the electronic device size is presently scaling down to the nano-meter region. In such an ultrasmall device, it is indispensable to take quantum mechanical effects into account in device modeling. In this paper, we first review the approaches to the quantum mechanical modeling of carrier transport in ultrasmall semiconductor devices. Then, we propose a novel quantum device model based upon a direct solution of the Boltzmann equation for multi-dimensional practical use. In this model, the quantum effects are represented in terms of quantum mechanically corrected potential in the classical Boltzmann equation.

  • 2-Dimensional Simulation of FN Current Suppression Including Phonon Assisted Tunneling Model in Silicon Dioxide

    Katsumi EIKYU  Kiyohiko SAKAKIBARA  Kiyoshi ISHIKAWA  Tadashi NISHIMURA  

     
    PAPER

      Page(s):
    889-893

    A gate oxide excess current model is described based on the phonon-assisted tunneling process of electrons into neutral traps. The influence on local electric field of charge of electrons trapped by neutral traps in gate oxide is simulated using a two-dimensional device simulator into which the new model is incorporated. FN current is suppressed with an increase in the neutral trap density to over 1019 cm-3. The calculated results reflect the endurance characteristics of flash memories in which erase/write operation speed depends on FN current.

  • Non-Isothermal Device Simulation of Gate Switching and Drain Breakdown Characteristics of Si MOSFET in Transient State

    Hirobumi KAWASHIMA  Ryo DANG (or DAN)  

     
    PAPER

      Page(s):
    894-899

    Electro-thermal characteristics of the Si MOSFET in transient state are reported using a non-isothermal device simulator where both the transistor's self-heating and the thermal influence of its neighboring devices are duly taken into account. The thermal influence is estimated using a three-dimensional thermal simulator. Based on this set-up, we predict time-dependent electro-thermal characteristics of the Si MOSFET at gate switching and its drain breakdown conditions. We show that the time delay between the electrical response and the lattice temperature rise, is significant and thus can not be neglected. In addition, we found that avalanche and thermal breakdown characteristics largely depend on the slope of the drain input voltage.

  • Noise Modelling in Linear and Nonlinear Devices

    Alain CAPPY  Francois DANNEVILLE  Gilles DAMBRINE  Beaudouin TAMEN  

     
    INVITED PAPER

      Page(s):
    900-907

    This paper presents a review of the techniques and models that can be used for the noise performance calculation of active devices under linear and nonlinear operations. In a first part, the modeling techniques and the noise models of FETs, HEMTs, BJTs and HBTs are described. In the second part, a generalization of the impedance field method for the noise modeling in devices under nonlinear periodic operation is proposed. This method can be used for the modeling of microwave and millimeter wave mixers and oscillators.

  • Large Signal Analysis of RF Circuits in Device Simulation

    Zhiping YU  Robert W. DUTTON  Boris TROYANOSKY  Junko SATO-IWANAGA  

     
    INVITED PAPER

      Page(s):
    908-916

    As wireless communication is penetrating every corner of the globe, the optimum design and accurate analysis of RF, power semiconductor devices become one of the biggest challenges in EDA and TCAD (Technology CAD) tool development. The performance gauge for these devices is quite different from that for either digital or analog devices aimed at small-signal applications in that the power gain, efficiency, and distortion (or the range of linearity) are the utmost design concerns. In this article, the methodology and mathematical foundation for numerical analysis of large signal distortion at the device simulation level are discussed. Although the harmonic balance (HB) method has long been used in circuit simulation for large signal distortion analysis, the implementation of the same method in device simulation faces daunting challenges, among which are the tremendous computational cost and memory storage management. But the benefits from conducting such a device level simulation are also obvious--for the first time, the impact of technology and structural variation of device on large signal performance can directly be assessed. The necessary steps to make the HB analysis feasible in device simulation are outlined and algorithmic improvement to ease the computation/storage burden is discussed. The applications of the device simulator for various RF power devices, including GaAs MESFETs and silicon LDMOS (lateral diffusion MOS) are presented, and the insight gained from such an analysis is provided.

  • Two-Dimensional Cyclic Bias Device Simulator and Its Application to GaAs HJFET Pulse Pattern Effect Analysis

    Yuji TAKAHASHI  Kazuaki KUNIHIRO  Yasuo OHNO  

     
    PAPER

      Page(s):
    917-923

    A device simulator that simulates device performance in the cyclic bias steady state was developed, and it was applied to GaAs hetero-junction FET (HJFET) pulse pattern effect. Although there is a large time-constant difference between the pulse signals and deep trap reactions, the simulator searches the cyclic bias steady states at about 30 iterations. A non-linear shift in the drain current level with the mark ratio was confirmed, which has been estimated from the rate equation of electron capture and emission based on Shockley-Read-Hall statistics for deep traps.

  • Measurement-Based Mathematical Active Device Modeling for High Frequency Circuit Simulation

    David E. ROOT  

     
    INVITED PAPER

      Page(s):
    924-936

    Measurement-based mathematical modeling is an attractive approach for simulating, accurately and efficiently, circuits based on active devices from a diverse range of constantly evolving processes and technologies. The principle of the measurement-based approach is that it is often most practical to characterize the device with various high-frequency measurements, and then mathematically transform the data to produce predictive device dynamical models for small-signal (linear) and large-signal (nonlinear) circuit design purposes. There are many mathematical, physical, and measurement considerations, however, that must be incorporated into any sound framework for successful measurement-based modeling. This paper will review some foundations of the subject and discuss some future trends. Review topics include constructing nonlinear constitutive relations from linear data parameterized by operating point and conservation laws including terminal charge conservation and energy conservation. Recent advances and trends will be discussed, such as pulsed I-V and pulsed S-parameter characterization with implications for electro-thermal and dispersive dynamical models, nonlinear wave-form measurements, and the relationship to some black-box behavioral modeling approaches.

  • Mesh Generation for Application in Technology CAD

    Peter FLEISCHMANN  Wolfgang PYKA  Siegfried SELBERHERR  

     
    INVITED PAPER

      Page(s):
    937-947

    After a brief discussion of the demands in meshing for semiconductor process and device simulation, we present a three-dimensional Delaunay refinement technique combined with a modified advancing front algorithm.

  • A Design Hierarchy of IC Interconnects and Gate Patterns

    Shinji ODANAKA  Akio MISAKA  Kyoji YAMASHITA  

     
    INVITED PAPER

      Page(s):
    948-954

    A new design hierarchy in TCAD is discussed with emphasis on a design of IC interconnects and gate patterns. Two design methodologies for gate patterns at a CMOS cell level and multilevel interconnect scheme at a chip level are proposed. This approach generates the layout design rules of gate patterns, considering the fabrication process and pattern layout dependency, and allows a design of multilevel interconnect scheme at the initial phase of technology development.

  • Non-uniform Multi-Layer IC Interconnect Transmission Line Characterization for Fast Signal Transient Simulation of High-Speed/High-Density VLSI Circuits

    Woojin JIN  Hanjong YOO  Yungseon EO  

     
    PAPER

      Page(s):
    955-966

    A new IC interconnect transmission line parameter determination methodology and a novel fast simulation technique for non-uniform transmission lines are presented and verified. The capacitance parameter is a strong function of a shielding effect between the layers, while silicon substrate has a substantial effect on inductance parameter. Thus, they are taken into account to determine the parameters. Then the virtual straight-line-based per unit length parameters are determined in order to perform the fast transient simulation of the non-uniform transmission lines. It was shown that not only the inductance effect due to a silicon substrate but also the shielding effect between the layers are too significant to be neglected. Further, a model order reduction technique is integrated into Berkeley SPICE in order to demonstrate that the virtual straight-line-based per-unit-length parameters can be efficiently employed for the fast transient response simulation of the complicated multi-layer interconnect structures. Since the methodology is very efficient as well as accurate, it can be usefully employed for IC CAD tools of high-performance VLSI circuit design.

  • Modeling and Characterization of Ultra Deep Submicron CMOS Devices

    Narain D. ARORA  

     
    INVITED PAPER

      Page(s):
    967-975

    During past decade MOS transistors have been aggressively scaled to dimensions below sub-quarter micron, the so called ultra deep submicron (UDSM) technology. At these dimensions transistor characteristics can not be accurately modeled using classical approach presently used in the most commonly used MOSFET models such as BSIM3, MOS9 etc, without recourse to large number of empirical parameters. In this paper we will discuss short comings of the present models and show how to overcome them using a hybrid approach of modeling, wherein both function regional and surface potential based approaches are combined together, that results in a model that reflects UDSM device behavior with smaller set of physically meaningful, and easily extractable model parameters. Various physical effects that need to be considered for UDSM modeling such as quantization of the inversion layer carrier, mobility degradation, carrier velocity saturation and overshoot, polydepletion effect, bias dependent source/drain resistance, vertical and lateral doping profiles, etc. will be discussed.

  • TCAD Needs and Applications from a User's Perspective

    Michael DUANE  

     
    INVITED PAPER

      Page(s):
    976-982

    TCAD (Technology Computer Aided Design) is the simulation of semiconductor processes and devices. Despite twenty years of development, there are still many TCAD skeptics. This paper will discuss some of the problems and limitations of TCAD, present some successful examples of its use, and discuss future simulation needs from a user's perspective. A key point is that the time pressures in modern semiconductor technology development often dictate the use of simple models for approximate results.

  • Process Synthesis Using TCAD: A Mixed-Signal Case Study

    Michael SMAYLING  John RODRIGUEZ  Alister YOUNG  Ichiro FUJII  

     
    INVITED PAPER

      Page(s):
    983-991

    A complex modular process flow was developed for PRISM technology to permit increased system integration. In order to combine the required functions--submicron CMOS Logic, Nonvolatile Memories, Precision Linear, and Power Drivers--on a monolithic silicon chip, a highly structured, systematic approach to process synthesis was developed. TCAD tools were used extensively for process design and verification. The 60 V LDMOS power transistor and the Flash memory cell built in the technology will be described to illustrate the process synthesis methodology.

  • Equipment Simulation of Production Reactors for Silicon Device Fabrication

    Christoph WERNER  

     
    INVITED PAPER

      Page(s):
    992-996

    Equipment simulation can provide valuable support in reactor design and process optimization. This article describes the physical and chemical models used in this technique and the current state of the art of the available software tools is reviewed. Moreover, the potential of equipment simulation will be highlighted by means of three recent examples from advanced quarter micron silicon process development. These include a vertical batch reactor for LPCVD of arsenic doped silicon oxide, a multi station tungsten CVD reactor, and a plasma reactor for silicon etching.

  • Worst/Best Device and Circuit Performances for MOSFETs Determined from Process Fluctuations

    Odin PRIGGE  Masami SUETAKE  Mitiko MIURA-MATTAUSCH  

     
    PAPER

      Page(s):
    997-1002

    Fluctuations of three device parameters (Tox, Nsub, ΔL) based on process fluctuations are taken as cause of device/circuit performances. In-line measured device parameters are approximated by Gaussian functions, and their 2σ values are assigned as boundaries of the performance fluctuations. Measured distributions both for device and curcuit performances are successfully reproduced.

  • Regular Section
  • Automatic Defect Pattern Detection on LSI Wafers Using Image Processing Techniques

    Kazuyuki MARUO  Tadashi SHIBATA  Takahiro YAMAGUCHI  Masayoshi ICHIKAWA  Tadahiro OHMI  

     
    PAPER-Integrated Electronics

      Page(s):
    1003-1012

    This paper describes a defect detection method which automatically extracts defect information from complicated background LSI patterns. Based on a scanning electron microscope (SEM) image, the defects on the wafer are characterized in terms of their locations, sizes and the shape of defects. For this purpose, two image processing techniques, the Hough transform and wavelet transform, have been employed. Especially, the Hough Transform for circles is applied to non-circular defects for estimating the shapes of defects. By experiments, it has been demonstrated that the system is very effective in defect identification and will be used as an integral part in future automatic defect pattern classification systems.

  • Verification of Wafer Test Process Simulation in VLSI Manufacturing System and Its Application

    Akihisa CHIKAMURA  Koji NAKAMAE  Hiromu FUJIOKA  

     
    PAPER-Integrated Electronics

      Page(s):
    1013-1017

    Our simulation method by using a combination of discrete event simulation and detailed parametric models of the VLSI manufacturing test system is verified by comparing simulated results with actual ones of a real wafer test facility of one-chip microcomputer in a Japanese semiconductor company. The simulated results are found to be in close agreement with the actual ones. As an application of the verified simulation method, we evaluate the economic effect of the introduction in the wafer test process of LSI testers that allows us to test multiple chips simultaneously. It is found that the optimum number of chips simultaneously tested by an LSI tester is 4 when considering both of the test cost per chip and the average test TAT.

  • Analysis of High Frequency Noise of AlGaAs/GaAs HBT

    Minseok KIM  Bumman KIM  

     
    PAPER-Semiconductor Materials and Devices

      Page(s):
    1018-1024

    Hawkins noise model is modified for HBT application. The non-ideal ideality factor of HBT is included in both dynamic resistance and noise figure equations. Emitter resistance is also included. The extraction method of noise resistance Rn is developed. Based on the method, a simple analytic equation of Rn is derived and experimentally verified. The effects of noise sources on minimum noise figure are analyzed. The dominant noise sources are the shot noises of emitter and collector currents. Generally, when the minimum noise figure is measured at various current levels, there exists an current level at which the slope of minimum noise figure curve is zero. The zero slope current level coincides with the current level at which the noise contribution of the emitter and collector shot noises including the cancellation by correlation of two sources is minimum. Parasitic resistance degrades output noise through the shot noise amplification with a minor effect of the thermal noise of itself.

  • A TFT-LCD Simulation Method Using Pixel Macro Models

    Hitoshi AOKI  Zhiping YU  

     
    PAPER-Electronic Displays

      Page(s):
    1025-1030

    The full liquid crystal display (LCD) simulation with real transistors and other active components is unrealistic. Because a flat panel display (FPD) includes thin-film-transistors (TFT's) whose number is, at least, the number of total pixels. It hits the simulation limit of SPICE if the number of transistors are more than 0.5 million. This paper demonstrates a new, fast, and effective simulation method for a full LCD panel. The method makes it possible to simulate large LCD panels whereas the conventional method cannot handle. The simulation circuit consists of a-Si TFT model presented earlier, the liquid crystal, the pixel macro models, and interconnects. We show the model parameter extraction and the pixel macro modeling process associated with the simulation results. Using the simulation method presented here some larger LCD panels can be accurately simulated in less than a minute on a workstation.