Zhenhai TAN Yun YANG Xiaoman WANG Fayez ALQAHTANI
Chenrui CHANG Tongwei LU Feng YAO
Takuma TSUCHIDA Rikuho MIYATA Hironori WASHIZAKI Kensuke SUMOTO Nobukazu YOSHIOKA Yoshiaki FUKAZAWA
Shoichi HIROSE Kazuhiko MINEMATSU
Toshimitsu USHIO
Yuta FUKUDA Kota YOSHIDA Takeshi FUJINO
Qingping YU Yuan SUN You ZHANG Longye WANG Xingwang LI
Qiuyu XU Kanghui ZHAO Tao LU Zhongyuan WANG Ruimin HU
Lei Zhang Xi-Lin Guo Guang Han Di-Hui Zeng
Meng HUANG Honglei WEI
Yang LIU Jialong WEI Shujian ZHAO Wenhua XIE Niankuan CHEN Jie LI Xin CHEN Kaixuan YANG Yongwei LI Zhen ZHAO
Ngoc-Son DUONG Lan-Nhi VU THI Sinh-Cong LAM Phuong-Dung CHU THI Thai-Mai DINH THI
Lan XIE Qiang WANG Yongqiang JI Yu GU Gaozheng XU Zheng ZHU Yuxing WANG Yuwei LI
Jihui LIU Hui ZHANG Wei SU Rong LUO
Shota NAKAYAMA Koichi KOBAYASHI Yuh YAMASHITA
Wataru NAKAMURA Kenta TAKAHASHI
Chunfeng FU Renjie JIN Longjiang QU Zijian ZHOU
Masaki KOBAYASHI
Shinichi NISHIZAWA Masahiro MATSUDA Shinji KIMURA
Keisuke FUKADA Tatsuhiko SHIRAI Nozomu TOGAWA
Yuta NAGAHAMA Tetsuya MANABE
Baoxian Wang Ze Gao Hongbin Xu Shoupeng Qin Zhao Tan Xuchao Shi
Maki TSUKAHARA Yusaku HARADA Haruka HIRATA Daiki MIYAHARA Yang LI Yuko HARA-AZUMI Kazuo SAKIYAMA
Guijie LIN Jianxiao XIE Zejun ZHANG
Hiroki FURUE Yasuhiko IKEMATSU
Longye WANG Lingguo KONG Xiaoli ZENG Qingping YU
Ayaka FUJITA Mashiho MUKAIDA Tadahiro AZETSU Noriaki SUETAKE
Xingan SHA Masao YANAGISAWA Youhua SHI
Jiqian XU Lijin FANG Qiankun ZHAO Yingcai WAN Yue GAO Huaizhen WANG
Sei TAKANO Mitsuji MUNEYASU Soh YOSHIDA Akira ASANO Nanae DEWAKE Nobuo YOSHINARI Keiichi UCHIDA
Kohei DOI Takeshi SUGAWARA
Yuta FUKUDA Kota YOSHIDA Takeshi FUJINO
Mingjie LIU Chunyang WANG Jian GONG Ming TAN Changlin ZHOU
Hironori UCHIKAWA Manabu HAGIWARA
Atsuko MIYAJI Tatsuhiro YAMATSUKI Tomoka TAKAHASHI Ping-Lun WANG Tomoaki MIMOTO
Kazuya TANIGUCHI Satoshi TAYU Atsushi TAKAHASHI Mathieu MOLONGO Makoto MINAMI Katsuya NISHIOKA
Masayuki SHIMODA Atsushi TAKAHASHI
Yuya Ichikawa Naoko Misawa Chihiro Matsui Ken Takeuchi
Katsutoshi OTSUKA Kazuhito ITO
Rei UEDA Tsunato NAKAI Kota YOSHIDA Takeshi FUJINO
Motonari OHTSUKA Takahiro ISHIMARU Yuta TSUKIE Shingo KUKITA Kohtaro WATANABE
Iori KODAMA Tetsuya KOJIMA
Yusuke MATSUOKA
Yosuke SUGIURA Ryota NOGUCHI Tetsuya SHIMAMURA
Tadashi WADAYAMA Ayano NAKAI-KASAI
Li Cheng Huaixing Wang
Beining ZHANG Xile ZHANG Qin WANG Guan GUI Lin SHAN
Sicheng LIU Kaiyu WANG Haichuan YANG Tao ZHENG Zhenyu LEI Meng JIA Shangce GAO
Kun ZHOU Zejun ZHANG Xu TANG Wen XU Jianxiao XIE Changbing TANG
Soh YOSHIDA Nozomi YATOH Mitsuji MUNEYASU
Ryo YOSHIDA Soh YOSHIDA Mitsuji MUNEYASU
Nichika YUGE Hiroyuki ISHIHARA Morikazu NAKAMURA Takayuki NAKACHI
Ling ZHU Takayuki NAKACHI Bai ZHANG Yitu WANG
Toshiyuki MIYAMOTO Hiroki AKAMATSU
Yanchao LIU Xina CHENG Takeshi IKENAGA
Kengo HASHIMOTO Ken-ichi IWATA
Shota TOYOOKA Yoshinobu KAJIKAWA
Kyohei SUDO Keisuke HARA Masayuki TEZUKA Yusuke YOSHIDA
Hiroshi FUJISAKI
Tota SUKO Manabu KOBAYASHI
Akira KAMATSUKA Koki KAZAMA Takahiro YOSHIDA
Tingyuan NIE Jingjing NIE Kun ZHAO
Xinyu TIAN Hongyu HAN Limengnan ZHOU Hanzhou WU
Shibo DONG Haotian LI Yifei YANG Jiatianyi YU Zhenyu LEI Shangce GAO
Kengo NAKATA Daisuke MIYASHITA Jun DEGUCHI Ryuichi FUJIMOTO
Jie REN Minglin LIU Lisheng LI Shuai LI Mu FANG Wenbin LIU Yang LIU Haidong YU Shidong ZHANG
Ken NAKAMURA Takayuki NOZAKI
Yun LIANG Degui YAO Yang GAO Kaihua JIANG
Guanqun SHEN Kaikai CHI Osama ALFARRAJ Amr TOLBA
Zewei HE Zixuan CHEN Guizhong FU Yangming ZHENG Zhe-Ming LU
Bowen ZHANG Chang ZHANG Di YAO Xin ZHANG
Zhihao LI Ruihu LI Chaofeng GUAN Liangdong LU Hao SONG Qiang FU
Kenji UEHARA Kunihiko HIRAISHI
David CLARINO Shohei KURODA Shigeru YAMASHITA
Qi QI Zi TENG Hongmei HUO Ming XU Bing BAI
Ling Wang Zhongqiang Luo
Zongxiang YI Qiuxia XU
Donghoon CHANG Deukjo HONG Jinkeon KANG
Xiaowu LI Wei CUI Runxin LI Lianyin JIA Jinguo YOU
Zhang HUAGUO Xu WENJIE Li LIANGLIANG Liao HONGSHU
Seonkyu KIM Myoungsu SHIN Hanbeom SHIN Insung KIM Sunyeop KIM Donggeun KWON Deukjo HONG Jaechul SUNG Seokhie HONG
Manabu HAGIWARA
Masayoshi NAKAMOTO Naoyuki AIKAWA
Recent trends in designing filters involve development of sparse filters with coefficients that not only have real but also zero values. These sparse filters can achieve a high performance through optimizing the selection of the zero coefficients and computing the real (non-zero) coefficients. Designing an infinite impulse response (IIR) sparse filter is more challenging than designing a finite impulse response (FIR) sparse filter. Therefore, studies on the design of IIR sparse filters have been rare. In this study, we consider IIR filters whose coefficients involve zero value, called sparse IIR filter. First, we formulate the design problem as a linear programing problem without imposing any stability condition. Subsequently, we reformulate the design problem by altering the error function and prepare several possible denominator polynomials with stable poles. Finally, by incorporating these methods into successive thinning algorithms, we develop a new design algorithm for the filters. To demonstrate the effectiveness of the proposed method, its performance is compared with that of other existing methods.
Makoto YAMASHITA Naoki HAYASHI Takeshi HATANAKA Shigemasa TAKAI
This paper investigates a constrained distributed online optimization problem over strongly connected communication networks, where a local cost function of each agent varies in time due to environmental factors. We propose a distributed online projected subgradient method over unbalanced directed networks. The performance of the proposed method is evaluated by a regret which is defined by the error between the cumulative cost over time and the cost of the optimal strategy in hindsight. We show that a logarithmic regret bound can be achieved for strongly convex cost functions. We also demonstrate the validity of the proposed method through a numerical example on distributed estimation over a diffusion field.
Yang YAN Yao YAO Zhi CHEN Qiuyan WANG
Codebooks with small inner-product correlation have applied in direct spread code division multiple access communications, space-time codes and compressed sensing. In general, it is difficult to construct optimal codebooks achieving the Welch bound or the Levenstein bound. This paper focuses on constructing asymptotically optimal codebooks with characters of cyclic groups. Based on the proposed constructions, two classes of asymptotically optimal codebooks with respect to the Welch bound are presented. In addition, parameters of these codebooks are new.
Ryosuke SUGIURA Yutaka KAMAMOTO Takehiro MORIYA
This paper presents extended-domain Golomb (XDG) code, an extension of Golomb code for sparse geometric sources as well as a generalization of extended-domain Golomb-Rice (XDGR) code, based on the idea of almost instantaneous fixed-to-variable length (AIFV) codes. Showing that the XDGR encoding can be interpreted as extended usage of the code proposed in the previous works, this paper discusses the following two facts: The proposed XDG code can be constructed as an AIFV code relating to Golomb code as XDGR code does to Rice code; XDG and Golomb codes are symmetric in the sense of relative redundancy. The proposed XDG code can be efficiently used for losslessly compressing geometric sources too sparse for the conventional Golomb and Rice codes. According to the symmetry, its relative redundancy is guaranteed to be as low as Golomb code compressing non-sparse geometric sources. Awing to this fact, the parameter of the proposed XDG code, which is more finely tunable than the conventional XDGR code, can be optimized for given inputs using the conventional techniques. Therefore, it is expected to be more useful for many coding applications that deal with geometric sources at low bit rates.
Thanh Vu DANG Hoang Trong VO Gwang Hyun YU Jin Young KIM
Capsules are fundamental informative units that are introduced into capsule networks to manipulate the hierarchical presentation of patterns. The part-hole relationship of an entity is learned through capsule layers, using a routing-by-agreement mechanism that is approximated by a voting procedure. Nevertheless, existing routing methods are computationally inefficient. We address this issue by proposing a novel routing mechanism, namely “shortcut routing”, that directly learns to activate global capsules from local capsules. In our method, the number of operations in the routing procedure is reduced by omitting the capsules in intermediate layers, resulting in lighter routing. To further address the computational problem, we investigate an attention-based approach, and propose fuzzy coefficients, which have been found to be efficient than mixture coefficients from EM routing. Our method achieves on-par classification results on the Mnist (99.52%), smallnorb (93.91%), and affNist (89.02%) datasets. Compared to EM routing, our fuzzy-based and attention-based routing methods attain reductions of 1.42 and 2.5 in terms of the number of calculations.
Kenji UEHARA Kunihiko HIRAISHI Kokolo IKEDA
Boarding is the last step of aircraft turnaround and its completion in the shortest possible time is desired. In this paper, we propose a new boarding strategy that outperforms conventional strategies such as the back-to-front strategy and the outside-in strategy. The Steffen method is known as one of the most efficient boarding strategies in literature, but it is hard to be realized in the real situation because the complete sorting of passengers in a prescribed order is required. The proposed strategy shows a performance close to that of the Steffen method and can be easily implemented by using a special gate system.
Masato KIKUCHI Kento KAWAKAMI Kazuho WATANABE Mitsuo YOSHIDA Kyoji UMEMURA
Likelihood ratios (LRs), which are commonly used for probabilistic data processing, are often estimated based on the frequency counts of individual elements obtained from samples. In natural language processing, an element can be a continuous sequence of N items, called an N-gram, in which each item is a word, letter, etc. In this paper, we attempt to estimate LRs based on N-gram frequency information. A naive estimation approach that uses only N-gram frequencies is sensitive to low-frequency (rare) N-grams and not applicable to zero-frequency (unobserved) N-grams; these are known as the low- and zero-frequency problems, respectively. To address these problems, we propose a method for decomposing N-grams into item units and then applying their frequencies along with the original N-gram frequencies. Our method can obtain the estimates of unobserved N-grams by using the unit frequencies. Although using only unit frequencies ignores dependencies between items, our method takes advantage of the fact that certain items often co-occur in practice and therefore maintains their dependencies by using the relevant N-gram frequencies. We also introduce a regularization to achieve robust estimation for rare N-grams. Our experimental results demonstrate that our method is effective at solving both problems and can effectively control dependencies.
Lingjun KONG Haiyang LIU Jin TIAN Shunwai ZHANG Shengmei ZHAO Yi FANG
In this letter, a method for the construction of polar codes based on the mutual information approximation (MIA) is proposed for the 4Tb/in2 two-dimensional inter-symbol interference (2D-ISI) channels, such as the bit-patterned magnetic recording (BPMR) and two-dimensional magnetic recording (TDMR). The basic idea is to exploit the MIA between the input and output of a 2D detector to establish a log-likelihood ratio (LLR) distribution model based on the MIA results, which compensates the gap caused by the 2D ISI channel. Consequently, the polar codes obtained by the optimization techniques previously developed for the additive white Gaussian noise (AWGN) channels can also have satisfactory performances over 2D-ISI channels. Simulated results show that the proposed polar codes can outperform the polar codes constructed by the traditional methods over 4Tb/in2 2D-ISI channels.
Seongah JEONG Jinkyu KANG Hoojin LEE
In this letter, we investigate tight analytical and asymptotic upper bounds for bit error rate (BER) of constitutional codes over exponentially correlated Nakagami-m fading channels. Specifically, we derive the BER expression depending on an exact closed-form formula for pairwise error event probabilities (PEEP). Moreover, the corresponding asymptotic analysis in high signal-to-noise ratio (SNR) regime is also explored, which is verified via numerical results. This allows us to have explicit insights on the achievable coding gain and diversity order.
The unattended malicious nodes pose great security threats to the integrity of the IoT sensor networks. However, preventions such as cryptography and authentication are difficult to be deployed in resource constrained IoT sensor nodes with low processing capabilities and short power supply. To tackle these malicious sensor nodes, in this study, the trust computing method is applied into the IoT sensor networks as a light weight security mechanism, and based on the theory of Chebyshev Polynomials for the approximation of time series, the trust data sequence generated by each sensor node is linearized and treated as a time series for malicious node detection. The proposed method is evaluated against existing schemes using several simulations and the results demonstrate that our method can better deal with malicious nodes resulting in higher correct packet delivery rate.
Seiichi KOJIMA Noriaki SUETAKE
LIME is a method for low-light image enhancement. Though LIME significantly enhances the contrast in dark regions, the effect of contrast enhancement tends to be insufficient in bright regions. In this letter, we propose an improved method of LIME. In the proposed method, the contrast in bright regions are improved while maintaining the contrast enhancement effect in dark regions.