The search functionality is under construction.
The search functionality is under construction.

IEICE TRANSACTIONS on Fundamentals

  • Impact Factor

    0.40

  • Eigenfactor

    0.003

  • article influence

    0.1

  • Cite Score

    1.1

Advance publication (published online immediately after acceptance)

Volume E106-A No.8  (Publication Date:2023/08/01)

    Regular Section
  • A Unified Design of Generalized Moreau Enhancement Matrix for Sparsity Aware LiGME Models

    Yang CHEN  Masao YAMAGISHI  Isao YAMADA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2023/02/14
      Page(s):
    1025-1036

    In this paper, we propose a unified algebraic design of the generalized Moreau enhancement matrix (GME matrix) for the Linearly involved Generalized-Moreau-Enhanced (LiGME) model. The LiGME model has been established as a framework to construct linearly involved nonconvex regularizers for sparsity (or low-rank) aware estimation, where the design of GME matrix is a key to guarantee the overall convexity of the model. The proposed design is applicable to general linear operators involved in the regularizer of the LiGME model, and does not require any eigendecomposition or iterative computation. We also present an application of the LiGME model with the proposed GME matrix to a group sparsity aware least squares estimation problem. Numerical experiments demonstrate the effectiveness of the proposed GME matrix in the LiGME model.

  • Dual Cuckoo Filter with a Low False Positive Rate for Deep Packet Inspection

    Yixuan ZHANG  Meiting XUE  Huan ZHANG  Shubiao LIU  Bei ZHAO  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2023/01/26
      Page(s):
    1037-1042

    Network traffic control and classification have become increasingly dependent on deep packet inspection (DPI) approaches, which are the most precise techniques for intrusion detection and prevention. However, the increasing traffic volumes and link speed exert considerable pressure on DPI techniques to process packets with high performance in restricted available memory. To overcome this problem, we proposed dual cuckoo filter (DCF) as a data structure based on cuckoo filter (CF). The CF can be extended to the parallel mode called parallel Cuckoo Filter (PCF). The proposed data structure employs an extra hash function to obtain two potential indices of entries. The DCF magnifies the superiority of the CF with no additional memory. Moreover, it can be extended to the parallel mode, resulting in a data structure referred to as parallel Dual Cuckoo filter (PDCF). The implementation results show that using the DCF and PDCF as identification tools in a DPI system results in time improvements of up to 2% and 30% over the CF and PCF, respectively.

  • LFWS: Long-Operation First Warp Scheduling Algorithm to Effectively Hide the Latency for GPUs

    Song LIU  Jie MA  Chenyu ZHAO  Xinhe WAN  Weiguo WU  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2023/02/10
      Page(s):
    1043-1050

    GPUs have become the dominant computing units to meet the need of high performance in various computational fields. But the long operation latency causes the underutilization of on-chip computing resources, resulting in performance degradation when running parallel tasks on GPUs. A good warp scheduling strategy is an effective solution to hide latency and improve resource utilization. However, most current warp scheduling algorithms on GPUs ignore the ability of long operations to hide latency. In this paper, we propose a long-operation-first warp scheduling algorithm, LFWS, for GPU platforms. The LFWS filters warps in the ready state to a ready queue and updates the queue in time according to changes in the status of the warp. The LFWS divides the warps in the ready queue into long and short operation groups based on the type of operations in their instruction buffers, and it gives higher priority to the long-operating warp in the ready queue. This can effectively use the long operations to hide some of the latency from each other and enhance the system's ability to hide the latency. To verify the effectiveness of the LFWS, we implement the LFWS algorithm on a simulation platform GPGPU-Sim. Experiments are conducted over various CUDA applications to evaluate the performance of LFWS algorithm, compared with other five warp scheduling algorithms. The results show that the LFWS algorithm achieves an average performance improvement of 8.01% and 5.09%, respectively, over three traditional and two novel warp scheduling algorithms, effectively improving computational resource utilization on GPU.

  • Construction of Singleton-Type Optimal LRCs from Existing LRCs and Near-MDS Codes

    Qiang FU  Buhong WANG  Ruihu LI  Ruipan YANG  

     
    PAPER-Coding Theory

      Pubricized:
    2023/01/31
      Page(s):
    1051-1056

    Modern large scale distributed storage systems play a central role in data center and cloud storage, while node failure in data center is common. The lost data in failure node must be recovered efficiently. Locally repairable codes (LRCs) are designed to solve this problem. The locality of an LRC is the number of nodes that participate in recovering the lost data from node failure, which characterizes the repair efficiency. An LRC is called optimal if its minimum distance attains Singleton-type upper bound [1]. In this paper, using basic techniques of linear algebra over finite field, infinite optimal LRCs over extension fields are derived from a given optimal LRC over base field(or small field). Next, this paper investigates the relation between near-MDS codes with some constraints and LRCs, further, proposes an algorithm to determine locality of dual of a given linear code. Finally, based on near-MDS codes and the proposed algorithm, those obtained optimal LRCs are shown.

  • An Integrated Convolutional Neural Network with a Fusion Attention Mechanism for Acoustic Scene Classification

    Pengxu JIANG  Yue XIE  Cairong ZOU  Li ZHAO  Qingyun WANG  

     
    LETTER-Engineering Acoustics

      Pubricized:
    2023/02/06
      Page(s):
    1057-1061

    In human-computer interaction, acoustic scene classification (ASC) is one of the relevant research domains. In real life, the recorded audio may include a lot of noise and quiet clips, making it hard for earlier ASC-based research to isolate the crucial scene information in sound. Furthermore, scene information may be scattered across numerous audio frames; hence, selecting scene-related frames is crucial for ASC. In this context, an integrated convolutional neural network with a fusion attention mechanism (ICNN-FA) is proposed for ASC. Firstly, segmented mel-spectrograms as the input of ICNN can assist the model in learning the short-term time-frequency correlation information. Then, the designed ICNN model is employed to learn these segment-level features. In addition, the proposed global attention layer may gather global information by integrating these segment features. Finally, the developed fusion attention layer is utilized to fuse all segment-level features while the classifier classifies various situations. Experimental findings using ASC datasets from DCASE 2018 and 2019 indicate the efficacy of the suggested method.

  • New Constructions of Sidon Spaces and Cyclic Subspace Codes

    Xue-Mei LIU   Tong SHI   Min-Yao NIU  Lin-Zhi SHEN  You GAO  

     
    LETTER-Coding Theory

      Pubricized:
    2023/01/30
      Page(s):
    1062-1066

    Sidon space is an important tool for constructing cyclic subspace codes. In this letter, we construct some Sidon spaces by using primitive elements and the roots of some irreducible polynomials over finite fields. Let q be a prime power, k, m, n be three positive integers and $ ho= lceil rac{m}{2k} ceil-1$, $ heta= lceil rac{n}{2m} ceil-1$. Based on these Sidon spaces and the union of some Sidon spaces, new cyclic subspace codes with size $ rac{3(q^{n}-1)}{q-1}$ and $ rac{ heta ho q^{k}(q^{n}-1)}{q-1}$ are obtained. The size of these codes is lager compared to the known constructions from [14] and [10].

  • Rank Metric Codes and Their Galois Duality

    Qing GAO  Yang DING  

     
    LETTER-Coding Theory

      Pubricized:
    2023/02/20
      Page(s):
    1067-1071

    In this paper, we describe the Galois dual of rank metric codes in the ambient space FQn×m and FQmn, where Q=qe. We obtain connections between the duality of rank metric codes with respect to distinct Galois inner products. Furthermore, for 0 ≤ s < e, we introduce the concept of qsm-dual bases of FQm over FQ and obtain some conditions about the existence of qsm-self-dual basis.

  • Low-Cost Learning-Based Path Loss Estimation Using Correlation Graph CNN

    Keita IMAIZUMI  Koichi ICHIGE  Tatsuya NAGAO  Takahiro HAYASHI  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/01/26
      Page(s):
    1072-1076

    In this paper, we propose a method for predicting radio wave propagation using a correlation graph convolutional neural network (C-Graph CNN). We examine what kind of parameters are suitable to be used as system parameters in C-Graph CNN. Performance of the proposed method is evaluated by the path loss estimation accuracy and the computational cost through simulation.

  • New Bounds on the Partial Hamming Correlation of Wide-Gap Frequency-Hopping Sequences with Frequency Shift

    Qianhui WEI  Zengqing LI  Hongyu HAN  Hanzhou WU  

     
    LETTER-Spread Spectrum Technologies and Applications

      Pubricized:
    2023/01/23
      Page(s):
    1077-1080

    In frequency hopping communication, time delay and Doppler shift incur interference. With the escalating upgrading of complicated interference, in this paper, the time-frequency two-dimensional (TFTD) partial Hamming correlation (PHC) properties of wide-gap frequency-hopping sequences (WGFHSs) with frequency shift are discussed. A bound on the maximum TFTD partial Hamming auto-correlation (PHAC) and two bounds on the maximum TFTD PHC of WGFHSs are got. Li-Fan-Yang bounds are the particular cases of new bounds for frequency shift is zero.