Zhenhai TAN Yun YANG Xiaoman WANG Fayez ALQAHTANI
Chenrui CHANG Tongwei LU Feng YAO
Takuma TSUCHIDA Rikuho MIYATA Hironori WASHIZAKI Kensuke SUMOTO Nobukazu YOSHIOKA Yoshiaki FUKAZAWA
Shoichi HIROSE Kazuhiko MINEMATSU
Toshimitsu USHIO
Yuta FUKUDA Kota YOSHIDA Takeshi FUJINO
Qingping YU Yuan SUN You ZHANG Longye WANG Xingwang LI
Qiuyu XU Kanghui ZHAO Tao LU Zhongyuan WANG Ruimin HU
Lei Zhang Xi-Lin Guo Guang Han Di-Hui Zeng
Meng HUANG Honglei WEI
Yang LIU Jialong WEI Shujian ZHAO Wenhua XIE Niankuan CHEN Jie LI Xin CHEN Kaixuan YANG Yongwei LI Zhen ZHAO
Ngoc-Son DUONG Lan-Nhi VU THI Sinh-Cong LAM Phuong-Dung CHU THI Thai-Mai DINH THI
Lan XIE Qiang WANG Yongqiang JI Yu GU Gaozheng XU Zheng ZHU Yuxing WANG Yuwei LI
Jihui LIU Hui ZHANG Wei SU Rong LUO
Shota NAKAYAMA Koichi KOBAYASHI Yuh YAMASHITA
Wataru NAKAMURA Kenta TAKAHASHI
Chunfeng FU Renjie JIN Longjiang QU Zijian ZHOU
Masaki KOBAYASHI
Shinichi NISHIZAWA Masahiro MATSUDA Shinji KIMURA
Keisuke FUKADA Tatsuhiko SHIRAI Nozomu TOGAWA
Yuta NAGAHAMA Tetsuya MANABE
Baoxian Wang Ze Gao Hongbin Xu Shoupeng Qin Zhao Tan Xuchao Shi
Maki TSUKAHARA Yusaku HARADA Haruka HIRATA Daiki MIYAHARA Yang LI Yuko HARA-AZUMI Kazuo SAKIYAMA
Guijie LIN Jianxiao XIE Zejun ZHANG
Hiroki FURUE Yasuhiko IKEMATSU
Longye WANG Lingguo KONG Xiaoli ZENG Qingping YU
Ayaka FUJITA Mashiho MUKAIDA Tadahiro AZETSU Noriaki SUETAKE
Xingan SHA Masao YANAGISAWA Youhua SHI
Jiqian XU Lijin FANG Qiankun ZHAO Yingcai WAN Yue GAO Huaizhen WANG
Sei TAKANO Mitsuji MUNEYASU Soh YOSHIDA Akira ASANO Nanae DEWAKE Nobuo YOSHINARI Keiichi UCHIDA
Kohei DOI Takeshi SUGAWARA
Yuta FUKUDA Kota YOSHIDA Takeshi FUJINO
Mingjie LIU Chunyang WANG Jian GONG Ming TAN Changlin ZHOU
Hironori UCHIKAWA Manabu HAGIWARA
Atsuko MIYAJI Tatsuhiro YAMATSUKI Tomoka TAKAHASHI Ping-Lun WANG Tomoaki MIMOTO
Kazuya TANIGUCHI Satoshi TAYU Atsushi TAKAHASHI Mathieu MOLONGO Makoto MINAMI Katsuya NISHIOKA
Masayuki SHIMODA Atsushi TAKAHASHI
Yuya Ichikawa Naoko Misawa Chihiro Matsui Ken Takeuchi
Katsutoshi OTSUKA Kazuhito ITO
Rei UEDA Tsunato NAKAI Kota YOSHIDA Takeshi FUJINO
Motonari OHTSUKA Takahiro ISHIMARU Yuta TSUKIE Shingo KUKITA Kohtaro WATANABE
Iori KODAMA Tetsuya KOJIMA
Yusuke MATSUOKA
Yosuke SUGIURA Ryota NOGUCHI Tetsuya SHIMAMURA
Tadashi WADAYAMA Ayano NAKAI-KASAI
Li Cheng Huaixing Wang
Beining ZHANG Xile ZHANG Qin WANG Guan GUI Lin SHAN
Sicheng LIU Kaiyu WANG Haichuan YANG Tao ZHENG Zhenyu LEI Meng JIA Shangce GAO
Kun ZHOU Zejun ZHANG Xu TANG Wen XU Jianxiao XIE Changbing TANG
Soh YOSHIDA Nozomi YATOH Mitsuji MUNEYASU
Ryo YOSHIDA Soh YOSHIDA Mitsuji MUNEYASU
Nichika YUGE Hiroyuki ISHIHARA Morikazu NAKAMURA Takayuki NAKACHI
Ling ZHU Takayuki NAKACHI Bai ZHANG Yitu WANG
Toshiyuki MIYAMOTO Hiroki AKAMATSU
Yanchao LIU Xina CHENG Takeshi IKENAGA
Kengo HASHIMOTO Ken-ichi IWATA
Shota TOYOOKA Yoshinobu KAJIKAWA
Kyohei SUDO Keisuke HARA Masayuki TEZUKA Yusuke YOSHIDA
Hiroshi FUJISAKI
Tota SUKO Manabu KOBAYASHI
Akira KAMATSUKA Koki KAZAMA Takahiro YOSHIDA
Tingyuan NIE Jingjing NIE Kun ZHAO
Xinyu TIAN Hongyu HAN Limengnan ZHOU Hanzhou WU
Shibo DONG Haotian LI Yifei YANG Jiatianyi YU Zhenyu LEI Shangce GAO
Kengo NAKATA Daisuke MIYASHITA Jun DEGUCHI Ryuichi FUJIMOTO
Jie REN Minglin LIU Lisheng LI Shuai LI Mu FANG Wenbin LIU Yang LIU Haidong YU Shidong ZHANG
Ken NAKAMURA Takayuki NOZAKI
Yun LIANG Degui YAO Yang GAO Kaihua JIANG
Guanqun SHEN Kaikai CHI Osama ALFARRAJ Amr TOLBA
Zewei HE Zixuan CHEN Guizhong FU Yangming ZHENG Zhe-Ming LU
Bowen ZHANG Chang ZHANG Di YAO Xin ZHANG
Zhihao LI Ruihu LI Chaofeng GUAN Liangdong LU Hao SONG Qiang FU
Kenji UEHARA Kunihiko HIRAISHI
David CLARINO Shohei KURODA Shigeru YAMASHITA
Qi QI Zi TENG Hongmei HUO Ming XU Bing BAI
Ling Wang Zhongqiang Luo
Zongxiang YI Qiuxia XU
Donghoon CHANG Deukjo HONG Jinkeon KANG
Xiaowu LI Wei CUI Runxin LI Lianyin JIA Jinguo YOU
Zhang HUAGUO Xu WENJIE Li LIANGLIANG Liao HONGSHU
Seonkyu KIM Myoungsu SHIN Hanbeom SHIN Insung KIM Sunyeop KIM Donggeun KWON Deukjo HONG Jaechul SUNG Seokhie HONG
Manabu HAGIWARA
Yang CHEN Masao YAMAGISHI Isao YAMADA
In this paper, we propose a unified algebraic design of the generalized Moreau enhancement matrix (GME matrix) for the Linearly involved Generalized-Moreau-Enhanced (LiGME) model. The LiGME model has been established as a framework to construct linearly involved nonconvex regularizers for sparsity (or low-rank) aware estimation, where the design of GME matrix is a key to guarantee the overall convexity of the model. The proposed design is applicable to general linear operators involved in the regularizer of the LiGME model, and does not require any eigendecomposition or iterative computation. We also present an application of the LiGME model with the proposed GME matrix to a group sparsity aware least squares estimation problem. Numerical experiments demonstrate the effectiveness of the proposed GME matrix in the LiGME model.
Yixuan ZHANG Meiting XUE Huan ZHANG Shubiao LIU Bei ZHAO
Network traffic control and classification have become increasingly dependent on deep packet inspection (DPI) approaches, which are the most precise techniques for intrusion detection and prevention. However, the increasing traffic volumes and link speed exert considerable pressure on DPI techniques to process packets with high performance in restricted available memory. To overcome this problem, we proposed dual cuckoo filter (DCF) as a data structure based on cuckoo filter (CF). The CF can be extended to the parallel mode called parallel Cuckoo Filter (PCF). The proposed data structure employs an extra hash function to obtain two potential indices of entries. The DCF magnifies the superiority of the CF with no additional memory. Moreover, it can be extended to the parallel mode, resulting in a data structure referred to as parallel Dual Cuckoo filter (PDCF). The implementation results show that using the DCF and PDCF as identification tools in a DPI system results in time improvements of up to 2% and 30% over the CF and PCF, respectively.
Song LIU Jie MA Chenyu ZHAO Xinhe WAN Weiguo WU
GPUs have become the dominant computing units to meet the need of high performance in various computational fields. But the long operation latency causes the underutilization of on-chip computing resources, resulting in performance degradation when running parallel tasks on GPUs. A good warp scheduling strategy is an effective solution to hide latency and improve resource utilization. However, most current warp scheduling algorithms on GPUs ignore the ability of long operations to hide latency. In this paper, we propose a long-operation-first warp scheduling algorithm, LFWS, for GPU platforms. The LFWS filters warps in the ready state to a ready queue and updates the queue in time according to changes in the status of the warp. The LFWS divides the warps in the ready queue into long and short operation groups based on the type of operations in their instruction buffers, and it gives higher priority to the long-operating warp in the ready queue. This can effectively use the long operations to hide some of the latency from each other and enhance the system's ability to hide the latency. To verify the effectiveness of the LFWS, we implement the LFWS algorithm on a simulation platform GPGPU-Sim. Experiments are conducted over various CUDA applications to evaluate the performance of LFWS algorithm, compared with other five warp scheduling algorithms. The results show that the LFWS algorithm achieves an average performance improvement of 8.01% and 5.09%, respectively, over three traditional and two novel warp scheduling algorithms, effectively improving computational resource utilization on GPU.
Qiang FU Buhong WANG Ruihu LI Ruipan YANG
Modern large scale distributed storage systems play a central role in data center and cloud storage, while node failure in data center is common. The lost data in failure node must be recovered efficiently. Locally repairable codes (LRCs) are designed to solve this problem. The locality of an LRC is the number of nodes that participate in recovering the lost data from node failure, which characterizes the repair efficiency. An LRC is called optimal if its minimum distance attains Singleton-type upper bound [1]. In this paper, using basic techniques of linear algebra over finite field, infinite optimal LRCs over extension fields are derived from a given optimal LRC over base field(or small field). Next, this paper investigates the relation between near-MDS codes with some constraints and LRCs, further, proposes an algorithm to determine locality of dual of a given linear code. Finally, based on near-MDS codes and the proposed algorithm, those obtained optimal LRCs are shown.
Pengxu JIANG Yue XIE Cairong ZOU Li ZHAO Qingyun WANG
In human-computer interaction, acoustic scene classification (ASC) is one of the relevant research domains. In real life, the recorded audio may include a lot of noise and quiet clips, making it hard for earlier ASC-based research to isolate the crucial scene information in sound. Furthermore, scene information may be scattered across numerous audio frames; hence, selecting scene-related frames is crucial for ASC. In this context, an integrated convolutional neural network with a fusion attention mechanism (ICNN-FA) is proposed for ASC. Firstly, segmented mel-spectrograms as the input of ICNN can assist the model in learning the short-term time-frequency correlation information. Then, the designed ICNN model is employed to learn these segment-level features. In addition, the proposed global attention layer may gather global information by integrating these segment features. Finally, the developed fusion attention layer is utilized to fuse all segment-level features while the classifier classifies various situations. Experimental findings using ASC datasets from DCASE 2018 and 2019 indicate the efficacy of the suggested method.
Xue-Mei LIU Tong SHI Min-Yao NIU Lin-Zhi SHEN You GAO
Sidon space is an important tool for constructing cyclic subspace codes. In this letter, we construct some Sidon spaces by using primitive elements and the roots of some irreducible polynomials over finite fields. Let q be a prime power, k, m, n be three positive integers and $ ho= lceil rac{m}{2k} ceil-1$, $ heta= lceil rac{n}{2m} ceil-1$. Based on these Sidon spaces and the union of some Sidon spaces, new cyclic subspace codes with size $rac{3(q^{n}-1)}{q-1}$ and $rac{ heta ho q^{k}(q^{n}-1)}{q-1}$ are obtained. The size of these codes is lager compared to the known constructions from [14] and [10].
In this paper, we describe the Galois dual of rank metric codes in the ambient space FQn×m and FQmn, where Q=qe. We obtain connections between the duality of rank metric codes with respect to distinct Galois inner products. Furthermore, for 0 ≤ s < e, we introduce the concept of qsm-dual bases of FQm over FQ and obtain some conditions about the existence of qsm-self-dual basis.
Keita IMAIZUMI Koichi ICHIGE Tatsuya NAGAO Takahiro HAYASHI
In this paper, we propose a method for predicting radio wave propagation using a correlation graph convolutional neural network (C-Graph CNN). We examine what kind of parameters are suitable to be used as system parameters in C-Graph CNN. Performance of the proposed method is evaluated by the path loss estimation accuracy and the computational cost through simulation.
Qianhui WEI Zengqing LI Hongyu HAN Hanzhou WU
In frequency hopping communication, time delay and Doppler shift incur interference. With the escalating upgrading of complicated interference, in this paper, the time-frequency two-dimensional (TFTD) partial Hamming correlation (PHC) properties of wide-gap frequency-hopping sequences (WGFHSs) with frequency shift are discussed. A bound on the maximum TFTD partial Hamming auto-correlation (PHAC) and two bounds on the maximum TFTD PHC of WGFHSs are got. Li-Fan-Yang bounds are the particular cases of new bounds for frequency shift is zero.