Hiroaki AKUTSU Ko ARAI
Lanxi LIU Pengpeng YANG Suwen DU Sani M. ABDULLAHI
Xiaoguang TU Zhi HE Gui FU Jianhua LIU Mian ZHONG Chao ZHOU Xia LEI Juhang YIN Yi HUANG Yu WANG
Yingying LU Cheng LU Yuan ZONG Feng ZHOU Chuangao TANG
Jialong LI Takuto YAMAUCHI Takanori HIRANO Jinyu CAI Kenji TEI
Wei LEI Yue ZHANG Hanfeng XIE Zebin CHEN Zengping CHEN Weixing LI
David CLARINO Naoya ASADA Atsushi MATSUO Shigeru YAMASHITA
Takashi YOKOTA Kanemitsu OOTSU
Xiaokang Jin Benben Huang Hao Sheng Yao Wu
Tomoki MIYAMOTO
Ken WATANABE Katsuhide FUJITA
Masashi UNOKI Kai LI Anuwat CHAIWONGYEN Quoc-Huy NGUYEN Khalid ZAMAN
Takaharu TSUBOYAMA Ryota TAKAHASHI Motoi IWATA Koichi KISE
Chi ZHANG Li TAO Toshihiko YAMASAKI
Ann Jelyn TIEMPO Yong-Jin JEONG
Haruhisa KATO Yoshitaka KIDANI Kei KAWAMURA
Jiakun LI Jiajian LI Yanjun SHI Hui LIAN Haifan WU
Gyuyeong KIM
Hyun KWON Jun LEE
Fan LI Enze YANG Chao LI Shuoyan LIU Haodong WANG
Guangjin Ouyang Yong Guo Yu Lu Fang He
Yuyao LIU Qingyong LI Shi BAO Wen WANG
Cong PANG Ye NI Jia Ming CHENG Lin ZHOU Li ZHAO
Nikolay FEDOROV Yuta YAMASAKI Masateru TSUNODA Akito MONDEN Amjed TAHIR Kwabena Ebo BENNIN Koji TODA Keitaro NAKASAI
Yukasa MURAKAMI Yuta YAMASAKI Masateru TSUNODA Akito MONDEN Amjed TAHIR Kwabena Ebo BENNIN Koji TODA Keitaro NAKASAI
Kazuya KAKIZAKI Kazuto FUKUCHI Jun SAKUMA
Yitong WANG Htoo Htoo Sandi KYAW Kunihiro FUJIYOSHI Keiichi KANEKO
Waqas NAWAZ Muhammad UZAIR Kifayat ULLAH KHAN Iram FATIMA
Haeyoung Lee
Ji XI Pengxu JIANG Yue XIE Wei JIANG Hao DING
Weiwei JING Zhonghua LI
Sena LEE Chaeyoung KIM Hoorin PARK
Akira ITO Yoshiaki TAKAHASHI
Rindo NAKANISHI Yoshiaki TAKATA Hiroyuki SEKI
Chuzo IWAMOTO Ryo TAKAISHI
Chih-Ping Wang Duen-Ren Liu
Yuya TAKADA Rikuto MOCHIDA Miya NAKAJIMA Syun-suke KADOYA Daisuke SANO Tsuyoshi KATO
Yi Huo Yun Ge
Rikuto MOCHIDA Miya NAKAJIMA Haruki ONO Takahiro ANDO Tsuyoshi KATO
Koichi FUJII Tomomi MATSUI
Yaotong SONG Zhipeng LIU Zhiming ZHANG Jun TANG Zhenyu LEI Shangce GAO
Souhei TAKAGI Takuya KOJIMA Hideharu AMANO Morihiro KUGA Masahiro IIDA
Jun ZHOU Masaaki KONDO
Tetsuya MANABE Wataru UNUMA
Kazuyuki AMANO
Takumi SHIOTA Tonan KAMATA Ryuhei UEHARA
Hitoshi MURAKAMI Yutaro YAMAGUCHI
Jingjing Liu Chuanyang Liu Yiquan Wu Zuo Sun
Zhenglong YANG Weihao DENG Guozhong WANG Tao FAN Yixi LUO
Yoshiaki TAKATA Akira ONISHI Ryoma SENDA Hiroyuki SEKI
Dinesh DAULTANI Masayuki TANAKA Masatoshi OKUTOMI Kazuki ENDO
Kento KIMURA Tomohiro HARAMIISHI Kazuyuki AMANO Shin-ichi NAKANO
Ryotaro MITSUBOSHI Kohei HATANO Eiji TAKIMOTO
Genta INOUE Daiki OKONOGI Satoru JIMBO Thiem Van CHU Masato MOTOMURA Kazushi KAWAMURA
Hikaru USAMI Yusuke KAMEDA
Yinan YANG
Takumi INABA Takatsugu ONO Koji INOUE Satoshi KAWAKAMI
Fengshan ZHAO Qin LIU Takeshi IKENAGA
Naohito MATSUMOTO Kazuhiro KURITA Masashi KIYOMI
Tomohiro KOBAYASHI Tomomi MATSUI
Shin-ichi NAKANO
Ming PAN
Michiko INOUE Kenji NODA Takeshi HIGASHIMURA Toshimitsu MASUZAWA Hideo FUJIWARA
We present a high-level synthesis scheme that considers weak testability of generated register-transfer level (RTL) data paths, as well as their area and performance. The weak testability, proposed in our previous work, is a testability measure of RTL data paths for non-scan design. In our scheme, we first extract a condition on resource sharing sufficient for weak testability from a data flow graph before synthesis, and treat the condition as design objectives in the following synthesis tasks. We propose heuristic synthesis algorithms which optimize area and the design objectives under the performance constraint.
Hiroshi YOKOYAMA Xiaoqing WEN Hideo TAMAMOTO
The advantage of random testing is that test application can be performed at a low cost in the BIST scheme. However, not all circuits are random pattern testable due to the existence of random pattern resistant faults. In this paper, we present a method for improving the random pattern testability of logic circuits by partial circuit duplication approach. The basic idea is to detect random pattern resistant faults by using the difference between the duplicated part of a circuit and the original part. Experimental results on benchmark circuits show that high fault coverage can be achieved with a very small amount of hardware overhead.
Toshinori HOSOKAWA Toshihiro HIRAOKA Mitsuyasu OHTA Michiaki MURAOKA Shigeo KUNINOBU
We will present a partial scan design method based on n-fold line-up structures in order to achieve high fault efficiency and reduce test pattern generation time for practical LSIs. We will also present a partial scan design method based on the state justification of pure load/hold FFs in order to achieve high fault efficiency and reduce the number of scan FFs for practical LSIs with lots of load/hold FFs. Experimental results for practical LSIs show that our presented methods can achieve high fault efficiency (more than 99%) and reduce the number of scan FFs for the LSI with lots of load/hold FFs.
Michinobu NAKAO Kazumi HATAYAMA Isao HIGASHI
This paper presents an acceleration of test points selection for circuits designed by a full-scan based BIST scheme. In order to accelerate the test points selection based on cost minimization, and reflecting random pattern testability, we introduce three techniques, the simultaneous selection of plural test points, the simplified selection of test points by the cost reduction factor, and the reduction of the number of test point candidates. We implement a program based on the proposed techniques and evaluate its efficiency experimentally using large scale circuits (26 k-420 k gates).
Cellular automata (CA) implementations are expected as potential test-pattern generators (TPGs) for Built-In Self-Testing of VLSI circuits, in which highly random parallel patterns ought to be generated with simple hardware. Objective here is to design one-dimensional, binary, and linear CA implementations with cyclic boundary conditions that can operate on maximum length of period. To provide maximum period of operations, it is necessary to bring some irregularities into the configurations. It is also expected for TPGs to make maximum or sufficiently long period of operations to prevent re-initialization. Our approach is to generate transition matrices based on fast parallel implementations of LFSRs which have trinomials as characteristic polynomials and then to modify the diagonal components. Some notable properties of diagonal vectors were observed.
Tsuyoshi SHINOGI Terumine HAYASHI
IDDQ testing, or current testing, is a powerful method which detects a large class of defects which cause abnormal quiescent current, by measuring the power supply current. One of the problems on IDDQ testing which prevent its full practical use in manufacturing is that the testing speed is slow owing to time-consuming IDDQ measurement. One of the solutions to this problem is test pattern compaction. This paper presents an efficient method for generating a compact test set for IDDQ testing of bridging faults in combinational CMOS circuits. Our method is based on the iterative improvement method. Each of random primary input patterns is iteratively improved through changing its values pin by pin selected orderly, so as to increase the number of newly detected faults in the current yet undetected fault set. While our method is simple and easy to implement, it is efficient. Experimental results for large ISCAS benchmark circuits demonstrate its efficiency in comparison with results of previous methods.
Toshiyuki MAEDA Yoshinobu HIGAMI Kozo KINOSHITA
This paper presents a test generation method for sequential circuits under IDDQ testing environment and the identification of untestable faults based on the information of illegal states. We consider a short between two signal lines, a short within one gate and a short between two nodes in different gates. The proposed test generation method consists of two techniques. First technique is to use weighted random vectors, and second technique is to use test generator for stuck-at faults. By using the two techniques together, high fault coverage and short computational time can be achieved. Finally experimental results for ISCAS89 benchmark circuits are presented.
Xiaoqing WEN Hideo TAMAMOTO Kewal K. SALUJA Kozo KINOSHITA
This paper presents a new methodology for diagnosing transistor leakage faults in a CMOS circuit by using both IDDQ and logic value information. A hierarchical procedure is used to identify and delete impossible fault candidates efficiently and a procedure is employed to generate diagnostic tests for improving diagnostic resolution. A novel approach for handling the intermediate output voltage of a faulty gate is used in new methods for fault simulation and diagnostic test generation based on primary output values. Experimental results on ISCAS
Kwame Osei BOATENG Hiroshi TAKAHASHI Yuzo TAKAMATSU
Testing for delay faults is very important in the verification of the timing behavior of digital circuits. When a circuit which is unable to operate at the desired clock speed is identified, it is necessary to locate the delay fault(s) affecting the circuit in order to remedy the situation. In this paper, we present a path-tracing method of multiple gate delay fault diagnosis in combinational circuits. We first present the basic rules for deducing suspected faults based on the multiple gate delay fault assumption. Next, in order to improve diagnostic resolution, we introduce rules for deducing non-existent faults based on the fault-free responses at the primary outputs. Using these rules, we present the detailed method for diagnosing multiple delay faults based on paths sensitized by test-pairs generated for marginal delays and gate delay faults [7]. Finally, we present results obtained from experiments on the ISCAS '85 benchmark circuits. The experimental results show the effectiveness of our method.
Yukihiro IGUCHI Tsutomu SASAO Munehiro MATSUURA
Three types of ternary decision diagrams (TDDs) are considered: AND -TDDs, EXOR-TDDs, and Kleene-TDDs. Kleene-TDDs are useful for logic simulation in the presence of unknown inputs. Let N(BDD:f), N(AND-TDD:f), and N(EXOR-TDD:f) be the number of non-terminal nodes in the BDD, the AND-TDD, and the EXOR-TDD for f, respectively. Let N(Kleene-TDD:
Hideyuki ICHIHARA Kozo KINOSHITA
The logic optimization based on redundancy addition and removal is one of methods which can deal with large-scale logic circuits. In this logic optimization a few redundant elements are added to a logic circuit, and then many other redundant elements which are generated by the redundancy addition are identified and removed. In this paper an optimization method based on redundancy addition and removal using implication relations is proposed. The advantage of the proposed method is to identify removable redundant elements with short time, because the proposed method directly identifies redundant elements using implication relations from two illegal signal assignments which are produced by redundancy addition. The experimental results compared this method with another method show that this method is faster than the another method without declining the optimization ability.
A novel method for the guided-probe diagnosis of high-performance LSIs containing macrocells, which have no internal netlist essential to the diagnosis, has been developed. In this method, the macrocell netlist is derived from its layout by extracting a leaf-cell-level netlist and is combined with the original one. Logic models for the leaf cells in the extracted netlist are also generated to obtain the logic-simulation data in the macrocells. The logic modeling is extended for application to memory macrocells, based on the idea that analog-behavior leaf cells in the memory macrocells are converted into logically equivalent circuits for logic simulation. Specifically, sense amplifiers and wired-or connections on bit lines are replaced with the corresponding logic-behavior models. The proposed method has been successfully applied to actual design data of LSIs containing macrocells, and it has been verified that it enables fault paths inside macrocells to be accurately traced and that the logic models give good timing resolution in the logic simulation. Using the proposed method, LSIs containing macrocells will be able to be diagnosed regardless of the macrocell types, without the need for a "golden" device, by an electron-beam guided probe system.
Fumio KOMATSU Hiroshi MOTOKI Motosuke MIYOSHI
We have developed a new autofocus method using image processing techniques. This method consists of two steps. The first step is the preset of an objective lens condition with the aid of the feedback of Z-sensor. Next, a hole pattern to be measured is detected using the pattern recognition. In the second step, the E-beam is shifted to the center of a hole pattern and scanned across the axis of a pattern. The exciting current of the objective lens is changed at constant intervals, where the center position of the range is the preset value of the Z-sensor. The best focus condition is determined based on the signal profile obtained by the autofocus scan. The measurement repeatability (3σ) can be achieved within 3. 9 nm. The percentage of success of 98. 7% can be realized in the present autofocus method.
We have improved the optical beam induced resistance change (OBIRCH) system so as to detect (1) a current path as small as 10-50 µA from the rear side of a chip, (2) current paths in silicide lines as narrow as 0. 2 µm, (3) high-resistance Ti-depleted polysilicon regions in 0. 2 µm wide silicide lines, and (4) high-resistance amorphous thin layers as thin as a few nanometers at the bottoms of vias. All detections were possible even in observation areas as wide as 5 mm
Teruhiko YAMADA Tsuyoshi SASAKI
We have specified typical fabrication defects of the current injection logic gates with four Josephson junctions (4JL gates), and then investigated the voltage and current behavior of defective gates by SPICE simulation to evaluate the defect coverage achieved by logic testing and current testing. The simulation results show that current testing may possibly achieve a high defect coverage while logic testing cannot detect almost half defects.
One-dimensional Cellular Automata (CA's) are considered as potential pseudorandom pattern generators to generate highly random parallel patterns with simple hardware configurations. A class of linear, binary, and of nearest neighbor (radius = 1) CA's is referred to here as elementary ones. This paper investigates operations of such CA's with fixed boundary conditions when non-null boundary values are applied to them. By modifying transition matrices of elementary CA's to include the influence of boundary values, structures of state transition diagrams are determined.