The search functionality is under construction.
The search functionality is under construction.

IEICE TRANSACTIONS on Fundamentals

  • Impact Factor

    0.40

  • Eigenfactor

    0.003

  • article influence

    0.1

  • Cite Score

    1.1

Advance publication (published online immediately after acceptance)

Volume E100-A No.10  (Publication Date:2017/10/01)

    Regular Section
  • Behavior-Level Analysis of a Successive Stochastic Approximation Analog-to-Digital Conversion System for Multi-Channel Biomedical Data Acquisition

    Sadahiro TANI  Toshimasa MATSUOKA  Yusaku HIRAI  Toshifumi KURATA  Keiji TATSUMI  Tomohiro ASANO  Masayuki UEDA  Takatsugu KAMATA  

     
    PAPER-Analog Signal Processing

      Page(s):
    2073-2085

    In the present paper, we propose a novel high-resolution analog-to-digital converter (ADC) for low-power biomedical analog front-ends, which we call the successive stochastic approximation ADC. The proposed ADC uses a stochastic flash ADC (SF-ADC) to realize a digitally controlled variable-threshold comparator in a successive-approximation-register ADC (SAR-ADC), which can correct errors originating from the internal digital-to-analog converter in the SAR-ADC. For the residual error after SAR-ADC operation, which can be smaller than thermal noise, the SF-ADC uses the statistical characteristics of noise to achieve high resolution. The SF-ADC output for the residual signal is combined with the SAR-ADC output to obtain high-precision output data using the supervised machine learning method.

  • Model Based Fallback Control for Networked Control System via Switched Lyapunov Function

    Tsubasa SASAKI  Kenji SAWADA  Seiichi SHIN  Shu HOSOKAWA  

     
    PAPER-Systems and Control

      Page(s):
    2086-2094

    This paper aims to propose a Fallback Control System isolated from cyber-attacks against networked control systems. The fallback control system implements maintaining functionality after an incident. Since cyber-attacks tamper with the communication contents of the networked control systems, the fallback control system is installed in a control target side. The fallback control system detects the incident without the communication contents on field network. This system detects an incident based on a bilinear observer and a switched Lyapunov function. When an incident is detected, normal operation is switched to fallback operation automatically. In this paper, a practical experiment with Ball-Sorter simulating a simple defective discriminator as a part of Factory Automation systems is shown. Assumed cyber-attacks against Ball-Sorter are Man In The Middle attack and Denial of Service attack.

  • Identification of Time-Varying Parameters of Hybrid Dynamical System Models and Its Application to Driving Behavior

    Thomas WILHELEM  Hiroyuki OKUDA  Tatsuya SUZUKI  

     
    PAPER-Systems and Control

      Page(s):
    2095-2105

    This paper presents a novel identification method for hybrid dynamical system models, where parameters have stochastic and time-varying characteristics. The proposed parameter identification scheme is based on a modified implementation of particle filtering, together with a time-smoothing technique. Parameters of the identified model are considered as time-varying random variables. Parameters are identified independently at each time step, using the Bayesian inference implemented as an iterative particle filtering method. Parameters time dynamics are smoothed using a distribution based moving average technique. Modes of the hybrid system model are handled independently, allowing any type of nonlinear piecewise model to be identified. The proposed identification scheme has low computation burden, and it can be implemented for online use. Effectiveness of the scheme is verified by numerical experiments, and an application of the method is proposed: analysis of driving behavior through identified time-varying parameters.

  • The Invulnerability of Traffic Networks under New Attack Strategies

    Xin-Ling GUO  Zhe-Ming LU  Hui LI  

     
    PAPER-Graphs and Networks

      Page(s):
    2106-2112

    In this paper, invulnerability and attack strategies are discussed for the undirected unweighted urban road networks and the directed weighted taxi networks of Beijing. Firstly, five new attack strategies, i.e., Initial All Degree (IAD), Initial All Strength (IAS), Recalculated Closeness (RC), Recalculated All Degree (RAD) and Recalculated All Strength (RAS) and five traditional attack strategies, i.e., Initial Degree (ID), Initial Betweenness (IB), Initial Closeness (IC), Recalculated Degree (RD) and Recalculated Betweenness (RB) are adopted to provoke the nodes failure. Secondly, we assess the impacts of these attack strategies using two invulnerability metrics, i.e., S (the relative size of the giant component) and E (the average network efficiency) through simulation experiments by MATLAB. Furthermore, we obtain some conclusions on the basis of the simulation results. Firstly, we discover that IB is more efficient than others for the undirected unweighted 5th ring Beijing road network based on S, and IB is more efficient than others at the beginning while ID is more efficient than IB at last based on E, while IAD causes a greater damage than IAS for the directed weighted 5th ring Beijing taxi network no matter with metrics S or E. Secondly, we find that dynamic attacks are more efficient than their corresponding static attacks, and RB is more destructive than others in all attack graphs while RAD is more destructive than RAS in all attack graphs. Moreover, we propose some suggestions to advance the reliability of the networks according to the simulation results. Additionally, we notice that the damage between ID (RD) and IAD (RAD) is similar due to the large proportion of two-way roads, and we realize that global measures should be employed to estimate the best attack strategy on the basis of that we find the best attack strategy changes with the nodes failure.

  • Generalized Framework to Attack RSA with Special Exposed Bits of the Private Key

    Shixiong WANG  Longjiang QU  Chao LI  Shaojing FU  

     
    PAPER-Cryptography and Information Security

      Page(s):
    2113-2122

    In this paper, we study partial key exposure attacks on RSA where the number of unexposed blocks of the private key is greater than or equal to one. This situation, called generalized framework of partial key exposure attack, was first shown by Sarkar [22] in 2011. Under a certain condition for the values of exposed bits, we present a new attack which needs fewer exposed bits and thus improves the result in [22]. Our work is a generalization of [28], and the approach is based on Coppersmith's method and the technique of unravelled linearization.

  • A 100-MHz 51.2-Gb/s Packet Lookup Engine with Automatic Table Update Function

    Kousuke IMAMURA  Ryota HONDA  Yoshifumi KAWAMURA  Naoki MIURA  Masami URANO  Satoshi SHIGEMATSU  Tetsuya MATSUMURA  Yoshio MATSUDA  

     
    PAPER-Communication Theory and Signals

      Page(s):
    2123-2134

    The development of an extremely efficient packet inspection algorithm for lookup engines is important in order to realize high throughput and to lower energy dissipation. In this paper, we propose a new lookup engine based on a combination of a mismatch detection circuit and a linked-list hash table. The engine has an automatic rule registration and deletion function; the results are that it is only necessary to input rules, and the various tables included in the circuits, such as the Mismatch Table, Index Table, and Rule Table, will be automatically configured using the embedded hardware. This function utilizes a match/mismatch assessment for normal packet inspection operations. An experimental chip was fabricated using 40-nm 8-metal CMOS process technology. The chip operates at a frequency of 100MHz under a power supply voltage of VDD =1.1V. A throughput of 100Mpacket/s (=51.2Gb/s) is obtained at an operating frequency of 100MHz, which is three times greater than the throughput of 33Mpacket/s obtained with a conventional lookup engine without a mismatch detection circuit. The measured energy dissipation was a 1.58pJ/b·Search.

  • A Study on Multi-User Interference Cancellers for Synchronous Optical CDMA Systems — Decision Distance and Bit Error Rate —

    Tomoko K. MATSUSHIMA  Masaki KAKUYAMA  Yuya MURATA  Yasuaki TERAMACHI  Shoichiro YAMASAKI  

     
    PAPER-Spread Spectrum Technologies and Applications

      Page(s):
    2135-2145

    Several kinds of techniques for excellent multi-user interference (MUI) cancellation have been proposed for direct-detection synchronous optical code division multiple access (OCDMA) systems. All these techniques utilize modified prime sequence codes (MPSCs) as signature codes and can remove MUI errors efficiently. In this paper, the features of three typical MUI cancellers are studied and compared in detail. The authors defined the parameter “decision distance” to show the feature of MUI cancellers. The bit error rate performance of each canceller is investigated by computer simulation and compared with that of the basic on-off keying (OOK) scheme without cancellation. Then, we investigate the relationship between the decision distance and the bit error rate performance. It is shown that every canceller has a better bit error rate performance than the basic OOK scheme. Especially, the equal weight orthogonal (EWO) scheme, whose decision distance is the largest, has the best error resistance property of the three MUI cancellers. The results show that the decision distance is a useful index to evaluate the error resistance property of MUI cancellation schemes.

  • Random-Valued Impulse Noise Removal Using Non-Local Search for Similar Structures and Sparse Representation

    Kengo TSUDA  Takanori FUJISAWA  Masaaki IKEHARA  

     
    PAPER-Image

      Page(s):
    2146-2153

    In this paper, we introduce a new method to remove random-valued impulse noise in an image. Random-valued impulse noise replaces the pixel value at a random position by a random value. Due to the randomness of the noisy pixel values, it is difficult to detect them by comparison with neighboring pixels, which is used in many conventional methods. Then we improve the recent noise detector which uses a non-local search of similar structure. Next we propose a new noise removal algorithm by sparse representation using DCT basis. Furthermore, the sparse representation can remove impulse noise by using the neighboring similar image patch. This method has much more superior noise removal performance than conventional methods at images. We confirm the effectiveness of the proposed method quantitatively and qualitatively.

  • Computational Complexity Reduction with Mel-Frequency Filterbank-Based Approach for Multichannel Speech Enhancement

    Jungpyo HONG  Sangbae JEONG  

     
    LETTER-Speech and Hearing

      Page(s):
    2154-2157

    Multichannel speech enhancement systems (MSES') have been widely utilized for diverse types of speech interface applications. A state-of-the-art MSES primarily utilizes multichannel minima-controlled recursive averaging for noise estimations and a parameterized multichannel Wiener filter for noise reduction. Many MSES' are implemented in the frequency domain, but they are computationally burdensome due to the numerous complex matrix operations involved. In this paper, a novel MSES intended to reduce the computational complexity with improved performance is proposed. The proposed system is implemented in the mel-filterbank domain using a frequency-averaging technique. Through a performance evaluation, it is verified that the proposed mel-filterbank MSES achieves improvements in the perceptual speech quality with a reduced level of computation compared to a conventional MSES.

  • Positioning Error Reduction Techniques for Precision Navigation by Post-Processing

    Yu Min HWANG  Sun Yui LEE  Isaac SIM  Jin Young KIM  

     
    LETTER-Digital Signal Processing

      Page(s):
    2158-2161

    With the increasing demand of Internet-of-Things applicability in various devices and location-based services (LBSs) with positioning capabilities, we proposed simple and effective post-processing techniques to reduce positioning error and provide more precise navigation to users in a pedestrian environment in this letter. The proposed positioning error reduction techniques (Technique 1-minimum range securement and bounce elimination, Technique 2-direction vector-based error correction) were studied considering low complexity and wide applicability to various types of positioning systems, e.g., global positioning system (GPS). Through the real field tests in urban areas, we have verified that an average positioning error of the proposed techniques is significantly decreased compared to that of a GPS-only environment.

  • Fast Parameter Estimation for Polyphase P Codes Modulated Radar Signals

    Qi ZHANG  Pei WANG  Jun ZHU  Bin TANG  

     
    LETTER-Digital Signal Processing

      Page(s):
    2162-2166

    A fast parameter estimation method with a coarse estimation and a fine estimation for polyphase P coded signals is proposed. For a received signal with N sampling points, the proposed method has an improved performance when the signal-to-noise ratio (SNR) is larger than 2dB and a lower computational complexity O(N logs N) compared with the latest time-frequency rate estimation method whose computational complexity is O(N2).

  • Performance Analysis of RSS-AoA-Based Key Generation Scheme for Mobile Wireless Nodes

    Yida WANG  Xinrong GUAN  Weiwei YANG  Yueming CAI  

     
    LETTER-Reliability, Maintainability and Safety Analysis

      Page(s):
    2167-2171

    By exploiting the reciprocity and randomness properties of wireless channels, physical-layer-based key generation provides a stable secrecy channel even when the main channel suffers from a bad condition. Even though the channel variation due to the mobility of nodes in wireless channels provides an improvement of key generation rate (KGR), it decreases the key consistency probability (KCP) between the node pairs. Inspired by the received signal strength(RSS)-angle of arrival(AoA)-based geolocation research, in this work, we analyze the performance of the key extraction using the RSS and AoA. We aim to identify a way to utilize the high KGR of the AoA-based method to overcome the major drawback of having a low KGR in the most common RSS-based scheme. Specifically, we derive the KCP and KGR of the RSS-AoA-based key generation scheme. Further, we propose a new performance metric called effective key generation rate (EKGR), to evaluate the designed key generation scheme in practical scenarios. Finally, we provide numerical results to verify the accuracy of the presented theoretical analysis.

  • On Locality of Some Ternary Linear Codes of Dimension 6

    Ruipan YANG  Ruihu LI  Luobin GUO  Qiang FU  

     
    LETTER-Coding Theory

      Page(s):
    2172-2175

    Locally repairable code (LRC) can recover any codeword symbol failure by accessing a small number of other symbols, which can increase the efficiency during the repair process. In a distributed storage system with locally repairable codes, any node failure can be rebuilt by accessing other fixed nodes. It is a promising prospect for the application of LRC. In this paper, some methods of constructing matrices which can generate codes with small locality will be proposed firstly. By analyzing the parameters, we construct the generator matrices of the best-known ternary linear codes of dimension 6, using methods such as shortening, puncturing and expansion. After analyzing the linear dependence of the column vectors in the generator matrices above, we find out the locality of the codes they generate. Many codes with small locality have been found.

  • Multipermutation Codes Correcting a Predetermined Number of Adjacent Deletions

    Peng ZHAO  Jianjun MU  Xiaopeng JIAO  

     
    LETTER-Coding Theory

      Page(s):
    2176-2179

    In this letter, three types of constructions for multipermutation codes are investigated by using interleaving technique and single-deletion permutation codes to correct a predetermined number of adjacent deletions. The decoding methods for the proposed codes are provided in proofs and verified with examples. The rates of these multipermutation codes are also compared.

  • New Optimal Constant Weight Codes from Difference Balanced Functions

    Wei SU  

     
    LETTER-Coding Theory

      Page(s):
    2180-2182

    Constant weight codes have mathematical interest and practical applications such as coding for bandwidth-efficient channels and construction of spherical codes for modulation. In this letter, by using difference balanced functions with d-form property, we constructed a class of constant composition code with new parameters, which achieves the equal sign of generalized Johnson bound.

  • Two Classes of Optimal Constant Composition Codes from Zero Difference Balanced Functions

    Bing LIU  Xia LI  Feng CHENG  

     
    LETTER-Coding Theory

      Page(s):
    2183-2186

    Constant composition codes (CCCs) are a special class of constant-weight codes. They include permutation codes as a subclass. The study and constructions of CCCs with parameters meeting certain bounds have been an interesting research subject in coding theory. A bridge from zero difference balanced (ZDB) functions to CCCs with parameters meeting the Luo-Fu-Vinck-Chen bound has been established by Ding (IEEE Trans. Information Theory 54(12) (2008) 5766-5770). This provides a new approach for obtaining optimal CCCs. The objective of this letter is to construct two classes of ZDB functions whose parameters not covered in the literature, and then obtain two classes of optimal CCCs meeting the Luo-Fu-Vinck-Chen bound from these new ZDB functions.

  • A Novel Construction of Tree-Structured Zero-Correlation Zone Sequence Sets

    Takafumi HAYASHI  Yodai WATANABE  Takao MAEDA  Shinya MATSUFUJI  

     
    LETTER-Coding Theory

      Page(s):
    2187-2194

    The present paper introduces a novel construction of structured ternary sequences having a zero-correlation zone (ZCZ) for both periodic and aperiodic correlation functions. The cross-correlation function and the side lobe of the auto-correlation function of the proposed sequence set are zero for phase shifts within the ZCZ. The proposed ZCZ sequence set can be generated from an arbitrary Hadamard matrix of order n. The sequence set of order 0 is identical to the r-th row of the Hadamard matrix. For m≥0, the sequence set of order (m+1) is constructed from the sequence set of order m by sequence concatenation and interleaving. The sequence set of order m has 2m subsets of size n. The length of the sequence is equal to n4m+2m+1(2m-1); The phase shift of the ZCZ for the whole sequence set is from -(2m-1) to (2m-1). The sequence set of order 0 is coincident with the rows of the given Hadamard sequence with no ZCZ. The subsets can be associated with a perfect binary tree of height m with 2m leaves. The r-th sequence subset consists of from the nr-th sequence to the ((n+1)r-1)-th sequence. The r-th subset is assigned to the r-th leaf of the perfect binary tree. For a longer distance between the corresponding leaves to the r-th and s-th sequences, the ZCZ of the r-th and s-th sequences is wider. This tree-structured width of ZCZ of a pair of the proposed sequences enables flexible design in applications of the proposed sequence set. The proposed sequence is suitable for a heterogeneous wireless network, which is one of the candidates for the fifth generation of radio access networks.

  • A Simplified QRD-M Algorithm in MIMO-OFDM Systems

    Jong-Kwang KIM  Jae-Hyun RO  Hyoung-Kyu SONG  

     
    LETTER-Communication Theory and Signals

      Page(s):
    2195-2199

    The Long Term Evolution (LTE) of mobile communication standard was designed by the 3rd generation partnership project (3GPP) to serve the requirements. Nowadays, the combining of the orthogonal frequency division multiplexing (OFDM) and the multiple input multiple output (MIMO) is supported in LTE system. The MIMO-OFDM is considered to improve data rate and channel capacity without additional bandwidth. Because the receivers get all transmission signals from all transmitters at the same time, many detection schemes have been developed for accurate estimation and low complexity. Among the detection schemes, the QR decomposition with M algorithm (QRD-M) achieves optimal error performance with low complexity. Nevertheless, the conventional QRD-M has high complexity for implementation. To overcome the problem, this letter proposes the low complexity QRD-M detection scheme in MIMO-OFDM systems. The proposed scheme has two elements which decide layer value and the limited candidates. The two elements are defined by the number of transmit antennas and the cardinality of modulation set respectively. From simulation results, the proposed scheme has the same error performance with the conventional QRD-M and very lower complexity than the conventional QRD-M.

  • Relay Selection Scheme for Improved Performance in the Wireless Communication Systems Based on OFDM

    Sang-Young KIM  Won-Chang KIM  Hyoung-Kyu SONG  

     
    LETTER-Communication Theory and Signals

      Page(s):
    2200-2203

    This letter proposes a relay selection scheme in order to improve a performance in the wireless cooperative communication system. The cooperative communication uses the relays in order to obtain a improved performance. The relay selection scheme has a great influence on the performance of the wireless cooperative communication. Because the diversity gain is affected by the superposition of the channels, a superposition of the channels is important in the wireless cooperative communication. The constructive superposition of the channels can improve the performance of the wireless cooperative communication. Because the conventional schemes do not consider the superposition of the channels, the conventional schemes are not suitable for the cooperative communication using the multiple relays. The new scheme considers the superposition of channels and selects the relays that can achieve the constructive superposition. Therefore, the new scheme can provide the improved performance by using the phase information between channels. The simulation results show that the bit error performance of the proposed scheme is better than the conventional schemes.

  • Optimizing the System Performance of Relay Enhanced Cellular Networks through Time Partitioning

    Liqun ZHAO  Hongpeng WANG  

     
    LETTER-Communication Theory and Signals

      Page(s):
    2204-2206

    In this letter, an effective algorithm is proposed to improve the performance of relay enhanced cellular networks, which is to allocate appropriate resources to each access point with quality of service constraint. First we derive the ergodic rate for backhaul link based on a poison point process model, and then allocate resources to each link according to the quality of service requirements and ergodic rate of links. Numerical results show that the proposed algorithm can not only improve system throughput but also improve the rate distribution of user equipment.

  • Adaptive K-Best BFTS Signal Detection Algorithm Based on the Channel Condition for MIMO-OFDM Signal Detector

    Jong-Kwang KIM  Seung-Jin CHOI  Jae-Hyun RO  Hyoung-Kyu SONG  

     
    LETTER-Communication Theory and Signals

      Page(s):
    2207-2211

    The breadth-first tree searching (BFTS) detection algorithm such as the QR decomposition with M algorithm (QRD-M) which is the generally K-best detection algorithm is suboptimal, but has high complexity. In this letter, the K-best BFTS detection algorithm having reduced complexity is proposed. The proposed detection algorithm calculates the channel condition to decide the thresholds for regulating complexity and performance and from the simulation results, it has good error performance with very low complexity.

  • An Adaptive Backoff Scheme in Wireless Sensor Networks

    Batbayar KHANDISH  Hyun PARK  Jung-Bong SUK  

     
    LETTER-Mobile Information Network and Personal Communications

      Page(s):
    2212-2215

    The IEEE 802.15.4 standard enables a short range, low data rate and low power communication between devices in wireless sensor networks (WSNs). In IEEE 802.15.4, a slotted carrier sensing multiple access with collision avoidance (CSMA/CA) algorithm is employed to coordinate a large number of sensor devices. Unlike IEEE 802.11 wireless LAN (WLAN), energy consumption requirements enable it to use fewer number of backoffs, which adversely increase collisions, resulting in degradation of energy consumption. In this letter, we devise an adaptive backoff scheme in WSN whose backoff range is adjusted depending on the contention level, and present its Markov model for mathematical analysis. The proposed scheme is analyzed and its efficiency is validated by ns-2 simulation in respect to network throughput and energy consumption. Its performance is also compared with the standard and previous works, showing that it outperforms them for a whole range of arrival rate.

  • An Implementation of LTE Simulator Based on NS-3 for Evaluating D2D Performance

    Elhadji Makhtar DIOUF  Woongsup LEE  

     
    LETTER-Mobile Information Network and Personal Communications

      Page(s):
    2216-2218

    With the expected increase in popularity of device-to-device (D2D) services, the importance of implementing an LTE simulator that enables fast and accurate evaluations of D2D related technologies is clear. In this paper, we report on a network simulator, D2dSim, with the aim of realizing an LTE-Advanced network that utilizes the D2D feature, i.e., in which direct transmission between mobile stations (MSs) is enabled. Using NS-3, one of the most popular network simulation platforms, D2dSim could become one of the first realistic open-source D2D-capable environments, providing realistic and standard-compliant implementations of a subset of Proximity-based Services complying with the LTE-A standard.