Zhenhai TAN Yun YANG Xiaoman WANG Fayez ALQAHTANI
Chenrui CHANG Tongwei LU Feng YAO
Takuma TSUCHIDA Rikuho MIYATA Hironori WASHIZAKI Kensuke SUMOTO Nobukazu YOSHIOKA Yoshiaki FUKAZAWA
Shoichi HIROSE Kazuhiko MINEMATSU
Toshimitsu USHIO
Yuta FUKUDA Kota YOSHIDA Takeshi FUJINO
Qingping YU Yuan SUN You ZHANG Longye WANG Xingwang LI
Qiuyu XU Kanghui ZHAO Tao LU Zhongyuan WANG Ruimin HU
Lei Zhang Xi-Lin Guo Guang Han Di-Hui Zeng
Meng HUANG Honglei WEI
Yang LIU Jialong WEI Shujian ZHAO Wenhua XIE Niankuan CHEN Jie LI Xin CHEN Kaixuan YANG Yongwei LI Zhen ZHAO
Ngoc-Son DUONG Lan-Nhi VU THI Sinh-Cong LAM Phuong-Dung CHU THI Thai-Mai DINH THI
Lan XIE Qiang WANG Yongqiang JI Yu GU Gaozheng XU Zheng ZHU Yuxing WANG Yuwei LI
Jihui LIU Hui ZHANG Wei SU Rong LUO
Shota NAKAYAMA Koichi KOBAYASHI Yuh YAMASHITA
Wataru NAKAMURA Kenta TAKAHASHI
Chunfeng FU Renjie JIN Longjiang QU Zijian ZHOU
Masaki KOBAYASHI
Shinichi NISHIZAWA Masahiro MATSUDA Shinji KIMURA
Keisuke FUKADA Tatsuhiko SHIRAI Nozomu TOGAWA
Yuta NAGAHAMA Tetsuya MANABE
Baoxian Wang Ze Gao Hongbin Xu Shoupeng Qin Zhao Tan Xuchao Shi
Maki TSUKAHARA Yusaku HARADA Haruka HIRATA Daiki MIYAHARA Yang LI Yuko HARA-AZUMI Kazuo SAKIYAMA
Guijie LIN Jianxiao XIE Zejun ZHANG
Hiroki FURUE Yasuhiko IKEMATSU
Longye WANG Lingguo KONG Xiaoli ZENG Qingping YU
Ayaka FUJITA Mashiho MUKAIDA Tadahiro AZETSU Noriaki SUETAKE
Xingan SHA Masao YANAGISAWA Youhua SHI
Jiqian XU Lijin FANG Qiankun ZHAO Yingcai WAN Yue GAO Huaizhen WANG
Sei TAKANO Mitsuji MUNEYASU Soh YOSHIDA Akira ASANO Nanae DEWAKE Nobuo YOSHINARI Keiichi UCHIDA
Kohei DOI Takeshi SUGAWARA
Yuta FUKUDA Kota YOSHIDA Takeshi FUJINO
Mingjie LIU Chunyang WANG Jian GONG Ming TAN Changlin ZHOU
Hironori UCHIKAWA Manabu HAGIWARA
Atsuko MIYAJI Tatsuhiro YAMATSUKI Tomoka TAKAHASHI Ping-Lun WANG Tomoaki MIMOTO
Kazuya TANIGUCHI Satoshi TAYU Atsushi TAKAHASHI Mathieu MOLONGO Makoto MINAMI Katsuya NISHIOKA
Masayuki SHIMODA Atsushi TAKAHASHI
Yuya Ichikawa Naoko Misawa Chihiro Matsui Ken Takeuchi
Katsutoshi OTSUKA Kazuhito ITO
Rei UEDA Tsunato NAKAI Kota YOSHIDA Takeshi FUJINO
Motonari OHTSUKA Takahiro ISHIMARU Yuta TSUKIE Shingo KUKITA Kohtaro WATANABE
Iori KODAMA Tetsuya KOJIMA
Yusuke MATSUOKA
Yosuke SUGIURA Ryota NOGUCHI Tetsuya SHIMAMURA
Tadashi WADAYAMA Ayano NAKAI-KASAI
Li Cheng Huaixing Wang
Beining ZHANG Xile ZHANG Qin WANG Guan GUI Lin SHAN
Sicheng LIU Kaiyu WANG Haichuan YANG Tao ZHENG Zhenyu LEI Meng JIA Shangce GAO
Kun ZHOU Zejun ZHANG Xu TANG Wen XU Jianxiao XIE Changbing TANG
Soh YOSHIDA Nozomi YATOH Mitsuji MUNEYASU
Ryo YOSHIDA Soh YOSHIDA Mitsuji MUNEYASU
Nichika YUGE Hiroyuki ISHIHARA Morikazu NAKAMURA Takayuki NAKACHI
Ling ZHU Takayuki NAKACHI Bai ZHANG Yitu WANG
Toshiyuki MIYAMOTO Hiroki AKAMATSU
Yanchao LIU Xina CHENG Takeshi IKENAGA
Kengo HASHIMOTO Ken-ichi IWATA
Shota TOYOOKA Yoshinobu KAJIKAWA
Kyohei SUDO Keisuke HARA Masayuki TEZUKA Yusuke YOSHIDA
Hiroshi FUJISAKI
Tota SUKO Manabu KOBAYASHI
Akira KAMATSUKA Koki KAZAMA Takahiro YOSHIDA
Tingyuan NIE Jingjing NIE Kun ZHAO
Xinyu TIAN Hongyu HAN Limengnan ZHOU Hanzhou WU
Shibo DONG Haotian LI Yifei YANG Jiatianyi YU Zhenyu LEI Shangce GAO
Kengo NAKATA Daisuke MIYASHITA Jun DEGUCHI Ryuichi FUJIMOTO
Jie REN Minglin LIU Lisheng LI Shuai LI Mu FANG Wenbin LIU Yang LIU Haidong YU Shidong ZHANG
Ken NAKAMURA Takayuki NOZAKI
Yun LIANG Degui YAO Yang GAO Kaihua JIANG
Guanqun SHEN Kaikai CHI Osama ALFARRAJ Amr TOLBA
Zewei HE Zixuan CHEN Guizhong FU Yangming ZHENG Zhe-Ming LU
Bowen ZHANG Chang ZHANG Di YAO Xin ZHANG
Zhihao LI Ruihu LI Chaofeng GUAN Liangdong LU Hao SONG Qiang FU
Kenji UEHARA Kunihiko HIRAISHI
David CLARINO Shohei KURODA Shigeru YAMASHITA
Qi QI Zi TENG Hongmei HUO Ming XU Bing BAI
Ling Wang Zhongqiang Luo
Zongxiang YI Qiuxia XU
Donghoon CHANG Deukjo HONG Jinkeon KANG
Xiaowu LI Wei CUI Runxin LI Lianyin JIA Jinguo YOU
Zhang HUAGUO Xu WENJIE Li LIANGLIANG Liao HONGSHU
Seonkyu KIM Myoungsu SHIN Hanbeom SHIN Insung KIM Sunyeop KIM Donggeun KWON Deukjo HONG Jaechul SUNG Seokhie HONG
Manabu HAGIWARA
Ikuru YOSHIDA Shigeru YAMASHITA
Digital Microfluidic Biochips (DMFBs) can execute biochemical experiments very efficiently, and thus they are drawing attention recently. In biochemical experiments on a DMFB, “sample preparation” is an important task to generate a sample droplet with the desired concentration value. We merge/split droplets in a DMFB to perform sample preparation. When we split a droplet into two droplets, the split cannot be done evenly in some cases. By some unbalanced splits, the generated concentration value may have unacceptable errors. This paper shows that we can decrease the impact of errors caused by unbalanced splits if we duplicate some mixing nodes in a given dilution graph for most cases. We then propose an efficient method to transform a dilution graph in order to decrease the impact of errors caused by unbalanced splits. We also present a preliminary experimental result to show the potential of our method.
Sai YAO Daichi KITAHARA Hiroki KURODA Akira HIRABAYASHI
The mean, median, and mode are usually calculated from univariate observations as the most basic representative values of a random variable. To measure the spread of the distribution, the standard deviation, interquartile range, and modal interval are also calculated. When we analyze continuous relations between a pair of random variables from bivariate observations, regression analysis is often used. By minimizing appropriate costs evaluating regression errors, we estimate the conditional mean, median, and mode. The conditional standard deviation can be estimated if the bivariate observations are obtained from a Gaussian process. Moreover, the conditional interquartile range can be calculated for various distributions by the quantile regression that estimates any conditional quantile (percentile). Meanwhile, the study of the modal interval regression is relatively new, and spline regression models, known as flexible models having the optimality on the smoothness for bivariate data, are not yet used. In this paper, we propose a modal interval regression method based on spline quantile regression. The proposed method consists of two steps. In the first step, we divide the bivariate observations into bins for one random variable, then detect the modal interval for the other random variable as the lower and upper quantiles in each bin. In the second step, we estimate the conditional modal interval by constructing both lower and upper quantile curves as spline functions. By using the spline quantile regression, the proposed method is widely applicable to various distributions and formulated as a convex optimization problem on the coefficient vectors of the lower and upper spline functions. Extensive experiments, including settings of the bin width, the smoothing parameter and weights in the cost function, show the effectiveness of the proposed modal interval regression in terms of accuracy and visual shape for synthetic data generated from various distributions. Experiments for real-world meteorological data also demonstrate a good performance of the proposed method.
Atsushi MATSUO Wakaki HATTORI Shigeru YAMASHITA
Mixed-Polarity Multiple-Control Toffoli (MPMCT) gates are generally used to implement large control logic functions for quantum computation. A logic circuit consisting of MPMCT gates needs to be mapped to a quantum computing device that invariably has a physical limitation, which means we need to (1) decompose the MPMCT gates into one- or two-qubit gates, and then (2) insert SWAP gates so that all the gates can be performed on Nearest Neighbor Architectures (NNAs). Up to date, the above two processes have only been studied independently. In this work, we investigate that the total number of gates in a circuit can be decreased if the above two processes are considered simultaneously as a single step. We developed a method that inserts SWAP gates while decomposing MPMCT gates unlike most of the existing methods. Also, we consider the effect on the latter part of a circuit carefully by considering the qubit placement when decomposing an MPMCT gate. Experimental results demonstrate the effectiveness of our method.
Yu CHEN Zulie PAN Yuanchao CHEN Yuwei LI
Web application second-order vulnerabilities first inject malicious code into the persistent data stores of the web server and then execute it at later sensitive operations, causing severe impact. Nevertheless, the dynamic features, the complex data propagation, and the inter-state dependencies bring many challenges in discovering such vulnerabilities. To address these challenges, we propose DISOV, a web application property graph (WAPG) based method to discover second-order vulnerabilities. Specifically, DISOV first constructs WAPG to represent data propagation and inter-state dependencies of the web application, which can be further leveraged to find the potential second-order vulnerabilities paths. Then, it leverages fuzz testing to verify the potential vulnerabilities paths. To verify the effectiveness of DISOV, we tested it in 13 popular web applications in real-world and compared with Black Widow, the state-of-the-art web vulnerability scanner. DISOV discovered 43 second-order vulnerabilities, including 23 second-order XSS vulnerabilities, 3 second-order SQL injection vulnerabilities, and 17 second-order RCE vulnerabilities. While Black Widow only discovered 18 second-order XSS vulnerabilities, with none second-order SQL injection vulnerability and second-order RCE vulnerability. In addition, DISOV has found 12 0-day second-order vulnerabilities, demonstrating its effectiveness in practice.
Hao WANG Sirui LIU Jianyong DUAN Li HE Xin LI
Sememes are the smallest semantic units of human languages, the composition of which can represent the meaning of words. Sememes have been successfully applied to many downstream applications in natural language processing (NLP) field. Annotation of a word's sememes depends on language experts, which is both time-consuming and labor-consuming, limiting the large-scale application of sememe. Researchers have proposed some sememe prediction methods to automatically predict sememes for words. However, existing sememe prediction methods focus on information of the word itself, ignoring the expert-annotated knowledge bases which indicate the relations between words and should value in sememe predication. Therefore, we aim at incorporating the expert-annotated knowledge bases into sememe prediction process. To achieve that, we propose a CilinE-guided sememe prediction model which employs an existing word knowledge base CilinE to remodel the sememe prediction from relational perspective. Experiments on HowNet, a widely used Chinese sememe knowledge base, have shown that CilinE has an obvious positive effect on sememe prediction. Furthermore, our proposed method can be integrated into existing methods and significantly improves the prediction performance. We will release the data and code to the public.
Intelligent reconfigurable surfaces (IRS) have attracted much attention from both industry and academia due to their performance improving capability and low complexity for 6G wireless communication systems. In this letter, we introduce an IRS-assisted space-time line code (STLC) technique. The STLC was introduced as a promising technique to acquire the optimal diversity gain in 1×2 single-input multiple-output (SIMO) channel without channel state information at receiver (CSIR). Using the cosine similarity theorem, we propose a novel phase-steering technique for the proposed IRS-assisted STLC technique. We also mathematically characterize the proposed IRS-assisted STLC technique in terms of outage probability and bit-error rate (BER). Based on computer simulations, it is shown that the results of analysis shows well match with the computer simulation results for various communication scenarios.
Feng LIU Xianlong CHENG Conggai LI Yanli XU
This letter solves the energy efficiency optimization problem for the simultaneous wireless information and power transfer (SWIPT) systems with non-orthogonal multiple access (NOMA), multiple input single output (MISO) and power-splitting structures, where each user may have different individual quality of service (QoS) requirements about information and energy. Nonlinear energy harvesting model is used. Alternate optimization approach is adopted to find the solution, which shows a fast convergence behavior. Simulation results show the proposed scheme has higher energy efficiency than existing dual-layer iteration and throughput maximization methods.
Yanming CHEN Bin LYU Zhen YANG Fei LI
In this letter, we propose an energy beamforming empowered relaying scheme for a batteryless IoT network, where wireless-powered relays are deployed between the hybrid access point (HAP) and batteryless IoT devices to assist the uplink information transmission from the devices to the HAP. In particular, the HAP first exploits energy beamforming to efficiently transmit radio frequency (RF) signals to transfer energy to the relays and as the incident signals to enable the information backscattering of batteryless IoT devices. Then, each relay uses the harvested energy to forward the decoded signals from its corresponding batteryless IoT device to the HAP, where the maximum-ratio combing is used for further performance improvement. To maximize the network sum-rate, the joint optimization of energy beamforming vectors at the HAP, network time scheduling, power allocation at the relays, and relection coefficient at the users is investigated. As the formulated problem is non-convex, we propose an alternating optimization algorithm with the variable substitution and semi-definite relaxation (SDR) techniques to solve it efficiently. Specifically, we prove that the obtained energy beamforming matrices are always rank-one. Numerical results show that compared to the benchmark schemes, the proposed scheme can achieve a significant sum-rate gain.