The search functionality is under construction.
The search functionality is under construction.

IEICE TRANSACTIONS on Fundamentals

  • Impact Factor

    0.40

  • Eigenfactor

    0.003

  • article influence

    0.1

  • Cite Score

    1.1

Advance publication (published online immediately after acceptance)

Volume E101-A No.6  (Publication Date:2018/06/01)

    Special Section on Image Media Quality
  • FOREWORD

    Toshiya NAKAGUCHI  

     
    FOREWORD

      Page(s):
    883-883
  • Study on Incongruence between Binocular Images when Gazing at the Rim of a Column with Equiluminance Random Dots

    Shinya MOCHIDUKI  Reina WATANABE  Miyuki SUGANUMA  Hiroaki KUDO  Noboru OHNISHI  Mitsuho YAMADA  

     
    PAPER

      Page(s):
    884-891

    Stereoscopic vision technology is applied in a wide range of fields, from 3D movies to medical care. Stereoscopic vision makes it possible to observe images in parallax between both eyes. However, parallax images cannot be used all the time due to a situation called “occlusion”, in which an object is hidden in the depths by another object. In this case, different images are projected on the right and left retina. Here, we propose a psychology experiment to elucidate the function of parvocellular cells in the LGN of the visual cortex of the brain using occlusion perception. As a new psychology experiment to clarify whether parvocellular cells in the LGN of the visual cortex, said to process chromatic and luminance information, can detect a disagreement between the retinal images produced by each eye, we measured convergence eye movement when gazing at the rim of a column under occlusion using an equiluminance random dot pattern. When eye movement prevented the disagreement of the retinal images caused by occlusion, we thought that convergence eye movement to move both eyes in front of the rim or divergence eye movement to move them behind the rim would occur. In other words, we thought that we could clarify whether there was parvocellular system process agreement or disagreement between the right and left retinal images under equiluminance. Therefore, we examined whether a system to detect disagreement between the retinal images exists in the brain when gazing at the rim of a column onto which an equiluminance random dot texture was mapped. Results suggested that the mechanism to avoid disagreement between the retinal images of the eyes caused by occlusion occurs in the parvocellular cells, which mainly process color information, as well as in the magnocellular cells, which process binocular disparity.

  • Analysis of Head Movement During Gaze Movement with Varied Viewing Distances and Positions

    Shinya MOCHIDUKI  Reina WATANABE  Hideaki TAKAHIRA  Mitsuho YAMADA  

     
    PAPER

      Page(s):
    892-899

    We measured head and eye movements while subjects viewed 4K high-definition images to clarify the influence of different viewing positions. Subjects viewed three images from nine viewing positions: three viewing distances x three viewing positions. Though heads rotated toward the center irrespective of viewing screen positions, they also tended to turn straight forward as the viewing distance became close to an image.

  • Estimating the Quality of Fractal Compressed Images Using Lacunarity

    Megumi TAKEZAWA  Hirofumi SANADA  Takahiro OGAWA  Miki HASEYAMA  

     
    LETTER

      Page(s):
    900-903

    In this paper, we propose a highly accurate method for estimating the quality of images compressed using fractal image compression. Using an iterated function system, fractal image compression compresses images by exploiting their self-similarity, thereby achieving high levels of performance; however, we cannot always use fractal image compression as a standard compression technique because some compressed images are of low quality. Generally, sufficient time is required for encoding and decoding an image before it can be determined whether the compressed image is of low quality or not. Therefore, in our previous study, we proposed a method to estimate the quality of images compressed using fractal image compression. Our previous method estimated the quality using image features of a given image without actually encoding and decoding the image, thereby providing an estimate rather quickly; however, estimation accuracy was not entirely sufficient. Therefore, in this paper, we extend our previously proposed method for improving estimation accuracy. Our improved method adopts a new image feature, namely lacunarity. Results of simulation showed that the proposed method achieves higher levels of accuracy than those of our previous method.

  • Regular Section
  • Stability Analysis Using Monodromy Matrix for Impacting Systems

    Hiroyuki ASAHARA  Takuji KOUSAKA  

     
    PAPER-Nonlinear Problems

      Page(s):
    904-914

    In this research, we propose an effective stability analysis method to impacting systems with periodically moving borders (periodic borders). First, we describe an n-dimensional impacting system with periodic borders. Subsequently, we present an algorithm based on a stability analysis method using the monodromy matrix for calculating stability of the waveform. This approach requires the state-transition matrix be related to the impact phenomenon, which is known as the saltation matrix. In an earlier study, the expression for the saltation matrix was derived assuming a static border (fixed border). In this research, we derive an expression for the saltation matrix for a periodic border. We confirm the performance of the proposed method, which is also applicable to systems with fixed borders, by applying it to an impacting system with a periodic border. Using this approach, we analyze the bifurcation of an impacting system with a periodic border by computing the evolution of the stable and unstable periodic waveform. We demonstrate a discontinuous change of the periodic points, which occurs when a periodic point collides with a border, in the one-parameter bifurcation diagram.

  • Two-Input Functional Encryption for Inner Products from Bilinear Maps

    Kwangsu LEE  Dong Hoon LEE  

     
    PAPER-Cryptography and Information Security

      Page(s):
    915-928

    Functional encryption is a new paradigm of public-key encryption that allows a user to compute f(x) on encrypted data CT(x) with a private key SKf to finely control the revealed information. Multi-input functional encryption is an important extension of (single-input) functional encryption that allows the computation f(x1,...,xn) on multiple ciphertexts CT(x1),...,CT(xn) with a private key SKf. Although multi-input functional encryption has many interesting applications like running SQL queries on encrypted database and computation on encrypted stream, current candidates are not yet practical since many of them are built on indistinguishability obfuscation. To solve this unsatisfactory situation, we show that practical two-input functional encryption schemes for inner products can be built based on bilinear maps. In this paper, we first propose a two-input functional encryption scheme for inner products in composite-order bilinear groups and prove its selective IND-security under simple assumptions. Next, we propose a two-client functional encryption scheme for inner products where each ciphertext can be associated with a time period and prove its selective IND-security. Furthermore, we show that our two-input functional encryption schemes in composite-order bilinear groups can be converted into schemes in prime-order asymmetric bilinear groups by using the asymmetric property of asymmetric bilinear groups.

  • Exposure-Resilient Identity-Based Dynamic Multi-Cast Key Distribution

    Kazuki YONEYAMA  Reo YOSHIDA  Yuto KAWAHARA  Tetsutaro KOBAYASHI  Hitoshi FUJI  Tomohide YAMAMOTO  

     
    PAPER-Cryptography and Information Security

      Page(s):
    929-944

    In this paper, we propose the first identity-based dynamic multi-cast key distribution (ID-DMKD) protocol which is secure against maximum exposure of secret information (e.g., secret keys and session-specific randomness). In DMKD protocols, users share a common session key without revealing any information of the session key to the semi-honest server, and can join/leave to/from the group at any time even after establishing the session key. Most of the known DMKD protocols are insecure if some secret information is exposed. Recently, an exposure resilient DMKD protocol was introduced, however, each user must manage his/her certificate by using the public-key infrastructure. We solve this problem by constructing the DMKD protocol authenticated by user's ID (i.e., without certificate). We introduce a formal security definition for ID-DMKD by extending the previous definition for DMKD. We must carefully consider exposure of the server's static secret key in the ID-DMKD setting because exposure of the server's static secret key causes exposure of all users' static secret keys. We prove that our protocol is secure in our security model in the standard model. Another advantage of our protocol is scalability: communication and computation costs of each user are independent from the number of users. Furthermore, we show how to extend our protocol to achieve non-interactive join by using certificateless encryption. Such an extension is useful in applications that the group members frequently change like group chat services.

  • More New Classes of Differentially 4-Uniform Permutations with Good Cryptographic Properties

    Jie PENG  Chik How TAN  Qichun WANG  Jianhua GAO  Haibin KAN  

     
    PAPER-Cryptography and Information Security

      Page(s):
    945-952

    Research on permutation polynomials over the finite field F22k with significant cryptographical properties such as possibly low differential uniformity, possibly high nonlinearity and algebraic degree has attracted a lot of attention and made considerable progress in recent years. Once used as the substitution boxes (S-boxes) in the block ciphers with Substitution Permutation Network (SPN) structure, this kind of polynomials can have a good performance against the classical cryptographic analysis such as linear attacks, differential attacks and the higher order differential attacks. In this paper we put forward a new construction of differentially 4-uniformity permutations over F22k by modifying the inverse function on some specific subsets of the finite field. Compared with the previous similar works, there are several advantages of our new construction. One is that it can provide a very large number of Carlet-Charpin-Zinoviev equivalent classes of functions (increasing exponentially). Another advantage is that all the functions are explicitly constructed, and the polynomial forms are obtained for three subclasses. The third advantage is that the chosen subsets are very large, hence all the new functions are not close to the inverse function. Therefore, our construction may provide more choices for designing of S-boxes. Moreover, it has been checked by a software programm for k=3 that except for one special function, all the other functions in our construction are Carlet-Charpin-Zinoviev equivalent to the existing ones.

  • Two-Round Witness Hiding Protocol

    Qihua NIU  Tongjiang YAN  Yuhua SUN  Chun'e ZHAO  Fei TANG  

     
    PAPER-Cryptography and Information Security

      Page(s):
    953-960

    The concept of witness hiding was proposed by Feige and Shamir as a natural relaxation of zero-knowledge. Prior constructions of witness hiding protocol for general hard distribution on NP language consist of at least three rounds. In this paper we construct a two-round witness hiding protocol for all hard distributions on NP language. Our construction is based on two primitives: point obfuscation and adaptive witness encryption scheme.

  • Cooperative Jamming for Secure Transmission with Finite Alphabet Input under Individual Power Constraint

    Kuo CAO  Yueming CAI  Yongpeng WU  Weiwei YANG  

     
    LETTER-Digital Signal Processing

      Page(s):
    961-966

    This letter studies secure transmission design with finite alphabet input for cooperative jamming network under individual power constraint. By adopting the zero-force scheme, where the jamming signal is fully laid in the null space of the relay-destination channel, the problem of enhancing the achievable secrecy rate is decomposed into two independent subproblems: relay weights design and power control. We reveal that the problem of relay weights design is identical to the problem of minimizing the maximal equivalent source-eavesdropper channel gain, which can be transformed into a semi-definite programming (SDP) problem and thus is tackled using interior point method. Besides, the problem of power control is solved with the fundamental relation between mutual information and minimum mean square error (MMSE). Numerical results show that the proposed scheme achieves significant performance gains compared to the conventional Gaussian design.

  • Correlation Performance Measures for Phase-Only Correlation Functions Based on Directional Statistics

    Shunsuke YAMAKI  Masahide ABE  Masayuki KAWAMATA  

     
    LETTER-Digital Signal Processing

      Page(s):
    967-970

    This letter proposes performance evaluation of phase-only correlation (POC) functions using signal-to-noise ratio (SNR) and peak-to-correlation energy (PCE). We derive the general expressions of SNR and PCE of the POC functions as correlation performance measures. SNR is expressed by simple fractional function of circular variance. PCE is simply given by squared peak value of the POC functions, and its expectation can be expressed in terms of circular variance.

  • On Robust Approximate Feedback Linearization with Non-Trivial Diagonal Terms

    Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Page(s):
    971-973

    A problem of global stabilization of a class of approximately feedback linearized systems is considered. A new system structural feature is the presence of non-trivial diagonal terms along with nonlinearity, which has not been addressed by the previous control results. The stability analysis reveals a new relationship between the time-varying rates of system parameters and system nonlinearity along with our controller. Two examples are given for illustration.

  • Physical-Layer Network Coding for Fading Bidirectional Relay Channels with M-CPFSK

    Nan SHA  Yuanyuan GAO  Mingxi GUO  Shijie WANG  Kui XU  

     
    LETTER-Communication Theory and Signals

      Page(s):
    974-977

    We consider a physical-layer network coding (PNC) scheme based on M-ary continuous phase frequency shift keying (M-CPFSK) modulation for a bidirectional relay network. In this scheme, the maximum-likelihood sequence detection (MLSD) algorithm for the relay receiver over Rayleigh fading channels is discussed. Moreover, an upper bound on the minimum Euclidean distance for the superimposed signals is analyzed and the corresponding lower bound for the average symbol error rate (SER) at the relay is derived. Numerical results are also sustained by simulations which corroborate the exactness of the theoretical analysis.

  • A Novel Ergodic Capacity Formula for Two-Wave with Diffuse Power Fading Channels

    Jinu GONG  Hoojin LEE  Joonhyuk KANG  

     
    LETTER-Communication Theory and Signals

      Page(s):
    978-981

    In this letter, we present a new expression of ergodic capacity for two-wave with diffuse power (TWDP) fading channels. The derived formula is relatively concise and consists of well-known functions even in infinite series form. Especially, the truncated approximate expression and asymptotic formula are also presented, which enable us to obtain useful and physical insights on the effect of TWDP fading on the ergodic capacity for various fading conditions.

  • Design of Asymmetric ZPC Sequences with Multiple Subsets via Interleaving Known ZPC Sequences

    Xiaoli ZENG  Longye WANG  Hong WEN  Gaoyuan ZHANG  

     
    LETTER-Spread Spectrum Technologies and Applications

      Page(s):
    982-987

    By interleaving known Z-periodic complementary (ZPC) sequence set, a new ZPC sequence set is constructed with multiple ZPC sequence subsets based on an orthogonal matrix in this work. For this novel ZPC sequence set, which refer to as asymmetric ZPC (AZPC) sequence set, its inter-subset zero cross-correlation zone (ZCCZ) is larger than intra-subset zero correlation zone (ZCZ). In particular, if select a periodic perfect complementary (PC) sequence or PC sequence set and a discrete Fourier transform (DFT) matrix, the resultant sequence set is an inter-group complementary (IGC) sequence set. When a suitable shift sequence is chosen, the obtained IGC sequence set will be optimal in terms of the corresponding theoretical bound. Compared with the existing constructions of IGC sequence sets, the proposed method can provide not only flexible ZCZ width but also flexible choice of basic sequences, which works well in both synchronous and asynchronous operational modes. The proposed AZPC sequence sets are suitable for multiuser environments.

  • Hybrid of Downlink and Uplink Transmission for Small Cell Networks with Interference Alignment

    Feifei ZHAO  Wenping MA  Momiao ZHOU  Chengli ZHANG  

     
    LETTER-Mobile Information Network and Personal Communications

      Page(s):
    988-991

    Based on Bezout's theorem, the feasibility condition for interference alignment (IA) is established in a two-way small cell network where part of cells transmit in downlink while the others in uplink. Moreover, the sufficient and necessary condition for the two-way network to achieve as many degrees of freedom (DoFs) as the traditional one-way network is presented. We find that in certain cases every small cell can independently decide to work in either downlink mode or uplink mode as needed without causing performance degradation of IA.

  • Block-Adaptive Selection of Recursive and Non-Recursive Type Intra Prediction Modes for Image Coding

    Yuta ISHIDA  Yusuke KAMEDA  Tomokazu ISHIKAWA  Ichiro MATSUDA  Susumu ITOH  

     
    LETTER-Image

      Page(s):
    992-996

    This paper proposes a lossy image coding method for still images. In this method, recursive and non-recursive type intra prediction techniques are adaptively selected on a block-by-block basis. The recursive-type intra prediction technique applies a linear predictor to each pel within a prediction block in a recursive manner, and thus typically produces smooth image values. In this paper, the non-recursive type intra prediction technique is extended from the angular prediction technique adopted in the H.265/HEVC video coding standard to enable interpolative prediction to the maximum possible extent. The experimental results indicate that the proposed method achieves better coding performance than the conventional method that only uses the recursive-type prediction technique.

  • Energy Efficient Mobile Positioning System Using Adaptive Particle Filter

    Yoojin KIM  Yongwoon SONG  Hyukjun LEE  

     
    LETTER-Measurement Technology

      Page(s):
    997-999

    An accurate but energy-efficient estimation of a position is important as the number of mobile computing systems grow rapidly. A challenge is to develop a highly accurate but energy efficient estimation method. A particle filter is a key algorithm to estimate and track the position of an object which exhibits non-linear movement behavior. However, it requires high usage of computation resources and energy. In this paper, we propose a scheme which can dynamically adjust the number of particles according to the accuracy of the reference signal for positioning and reduce the energy consumption by 37% on Cortex A7.