The search functionality is under construction.

IEICE TRANSACTIONS on Fundamentals

  • Impact Factor

    0.48

  • Eigenfactor

    0.003

  • article influence

    0.1

  • Cite Score

    1.1

Advance publication (published online immediately after acceptance)

Volume E103-A No.11  (Publication Date:2020/11/01)

    Regular Section
  • A Comprehensive Performance Evaluation on Iterative Algorithms for Sensitivity Analysis of Continuous-Time Markov Chains

    Yepeng CHENG  Hiroyuki OKAMURA  Tadashi DOHI  

     
    PAPER-Numerical Analysis and Optimization

      Page(s):
    1252-1259

    This paper discusses how to compute the parametric sensitivity function in continuous-time Markov chains (CTMC). The sensitivity function is the first derivative of the steady-state probability vector regarding a CTMC parameter. Since the sensitivity function is given as a solution of linear equations with a sparse matrix, several linear equation solvers are available to obtain it. In this paper, we consider Jacobi and successive-over relaxation as variants of the Gauss-Seidel algorithm. In addition, we develop an algorithm based on the Takahashi method for the sensitivity function. In numerical experiments, we comprehensively evaluate the performance of these algorithms from the viewpoint of computation time and accuracy.

  • Preimage Attacks on Reduced Troika with Divide-and-Conquer Methods

    Fukang LIU  Takanori ISOBE  

     
    PAPER-Cryptography and Information Security

      Page(s):
    1260-1273

    Troika is a recently proposed sponge-based hash function for IOTA's ternary architecture and platform, which is developed by CYBERCRYPT and is now used in IOTA's blockchain. In this paper, we introduce the preimage attack on 2/3 rounds of Troika with a divide-and-conquer approach. Firstly, we propose the equivalent conditions to determine whether a message is the preimage with an algebraic method. As a result, for the preimage attack on two-round Troika, we can search the preimage only in a valid smaller space and efficiently enumerate the messages which can satisfy most of the equivalent conditions with a guess-and-determine technique. Our experiments show that the time complexity of the preimage attack on 2-round Troika can be improved to 379 from 3243. For the preimage attack on 3-round Troika, the MILP-based method is applied to achieve the optimal time complexity, which is 327 times faster than brute force.

  • Testing Homogeneity for Normal Mixture Models: Variational Bayes Approach

    Natsuki KARIYA  Sumio WATANABE  

     
    PAPER-Information Theory

      Page(s):
    1274-1282

    The test of homogeneity for normal mixtures has been used in various fields, but its theoretical understanding is limited because the parameter set for the null hypothesis corresponds to singular points in the parameter space. In this paper, we shed a light on this issue from a new perspective, variational Bayes, and offer a theory for testing homogeneity based on it. Conventional theory has not reveal the stochastic behavior of the variational free energy, which is necessary for constructing a hypothesis test, has remained unknown. We clarify it for the first time and construct a new test base on it. Numerical experiments show the validity of our results.

  • Concatenated LDPC/Trellis Codes: Surpassing the Symmetric Information Rate of Channels with Synchronization Errors

    Ryo SHIBATA  Gou HOSOYA  Hiroyuki YASHIMA  

     
    PAPER-Coding Theory

      Pubricized:
    2020/09/03
      Page(s):
    1283-1291

    We propose a coding/decoding strategy that surpasses the symmetric information rate of a binary insertion/deletion (ID) channel and approaches the Markov capacity of the channel. The proposed codes comprise inner trellis codes and outer irregular low-density parity-check (LDPC) codes. The trellis codes are designed to mimic the transition probabilities of a Markov input process that achieves a high information rate, whereas the LDPC codes are designed to maximize an iterative decoding threshold in the superchannel (concatenation of the ID channels and trellis codes).

  • Asymptotically Optimal Codebooks in Regard to the Welch Bound with Characters

    Gang WANG  Min-Yao NIU  Lin-Zhi SHEN  You GAO  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2020/05/14
      Page(s):
    1292-1295

    In this letter, motivated by the research of Tian et al., two constructions of asymptotically optimal codebooks in regard to the Welch bound with additive and multiplicative characters are provided. The parameters of constructed codebooks are new, which are different from those in the letter of Tian et al.

  • Practical Card-Based Protocol for Three-Input Majority Open Access

    Kenji YASUNAGA  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2020/05/14
      Page(s):
    1296-1298

    We present a card-based protocol for computing a three-input majority using six cards. The protocol essentially consists of performing a simple XOR protocol two times. Compared to the existing protocols, our protocol does not require private operations other than choosing cards.

  • Structural Analysis of Nonbinary Cyclic and Quasi-Cyclic LDPC Codes with α-Multiplied Parity-Check Matrices

    Haiyang LIU  Hao ZHANG  Lianrong MA  Lingjun KONG  

     
    LETTER-Coding Theory

      Pubricized:
    2020/05/12
      Page(s):
    1299-1303

    In this letter, the structural analysis of nonbinary cyclic and quasi-cyclic (QC) low-density parity-check (LDPC) codes with α-multiplied parity-check matrices (PCMs) is concerned. Using analytical methods, several structural parameters of nonbinary cyclic and QC LDPC codes with α-multiplied PCMs are determined. In particular, some classes of nonbinary LDPC codes constructed from finite fields and finite geometries are shown to have good minimum and stopping distances properties, which may explain to some extent their wonderful decoding performances.

  • Fast Converging ADMM Penalized Decoding Method Based on Improved Penalty Function for LDPC Codes

    Biao WANG  

     
    LETTER-Coding Theory

      Pubricized:
    2020/05/08
      Page(s):
    1304-1307

    For low-density parity-check (LDPC) codes, the penalized decoding method based on the alternating direction method of multipliers (ADMM) can improve the decoding performance at low signal-to-noise ratios and also has low decoding complexity. There are three effective methods that could increase the ADMM penalized decoding speed, which are reducing the number of Euclidean projections in ADMM penalized decoding, designing an effective penalty function and selecting an appropriate layered scheduling strategy for message transmission. In order to further increase the ADMM penalized decoding speed, through reducing the number of Euclidean projections and using the vertical layered scheduling strategy, this paper designs a fast converging ADMM penalized decoding method based on the improved penalty function. Simulation results show that the proposed method not only improves the decoding performance but also reduces the average number of iterations and the average decoding time.

  • On the Calculation of the G-MGF for Two-Ray Fading Model with Its Applications in Communications

    Jinu GONG  Hoojin LEE  Rumin YANG  Joonhyuk KANG  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2020/05/15
      Page(s):
    1308-1311

    Two-ray (TR) fading model is one of the fading models to represent a worst-case fading scenario. We derive the exact closed-form expressions of the generalized moment generating function (G-MGF) for the TR fading model, which enables us to analyze the numerous types of wireless communication applications. Among them, we carry out several analytical results for the TR fading model, including the exact ergodic capacity along with asymptotic expressions and energy detection performance. Finally, we provide numerical results to validate our evaluations.

  • OFR-Net: Optical Flow Refinement with a Pyramid Dense Residual Network

    Liping ZHANG  Zongqing LU  Qingmin LIAO  

     
    LETTER-Computer Graphics

      Pubricized:
    2020/04/30
      Page(s):
    1312-1318

    This paper proposes a new and effective convolutional neural network model termed OFR-Net for optical flow refinement. The OFR-Net exploits the spatial correlation between images and optical flow fields. It adopts a pyramidal codec structure with residual connections, dense connections and skip connections within and between the encoder and decoder, to comprehensively fuse features of different scales, locally and globally. We also introduce a warp loss to restrict large displacement refinement errors. A series of experiments on the FlyingChairs and MPI Sintel datasets show that the OFR-Net can effectively refine the optical flow predicted by various methods.

  • Analysis of Rescue Request and Damage Report Tweets Posted during 2019 Typhoon Hagibis Open Access

    Keisuke UTSU  Osamu UCHIDA  

     
    LETTER-Human Communications

      Pubricized:
    2020/05/20
      Page(s):
    1319-1323

    The 2019 Typhoon Hagibis (No. 19) caused widespread destruction in eastern Japan. During the disaster, many tweets including rescue request hashtags such as #救助 (meaning #Rescue) and #救助要請 (meaning #Rescue_request) were posted on Twitter. An official disaster information account of the Nagano Prefectural Government asked the public to provide information in the form of damage reports and rescue requests using the hashtag #台風19号長野県被害 (#Typhoon_No.19_Nagano_Prefecture_damage). As a result, many tweets were posted using this hashtag. Moreover, the account contacted the posters of tweets requesting rescue and delivered the information to the Fire Department. In this study, we analyze the circumstances of the above tweets.