Zhenhai TAN Yun YANG Xiaoman WANG Fayez ALQAHTANI
Chenrui CHANG Tongwei LU Feng YAO
Takuma TSUCHIDA Rikuho MIYATA Hironori WASHIZAKI Kensuke SUMOTO Nobukazu YOSHIOKA Yoshiaki FUKAZAWA
Shoichi HIROSE Kazuhiko MINEMATSU
Toshimitsu USHIO
Yuta FUKUDA Kota YOSHIDA Takeshi FUJINO
Qingping YU Yuan SUN You ZHANG Longye WANG Xingwang LI
Qiuyu XU Kanghui ZHAO Tao LU Zhongyuan WANG Ruimin HU
Lei Zhang Xi-Lin Guo Guang Han Di-Hui Zeng
Meng HUANG Honglei WEI
Yang LIU Jialong WEI Shujian ZHAO Wenhua XIE Niankuan CHEN Jie LI Xin CHEN Kaixuan YANG Yongwei LI Zhen ZHAO
Ngoc-Son DUONG Lan-Nhi VU THI Sinh-Cong LAM Phuong-Dung CHU THI Thai-Mai DINH THI
Lan XIE Qiang WANG Yongqiang JI Yu GU Gaozheng XU Zheng ZHU Yuxing WANG Yuwei LI
Jihui LIU Hui ZHANG Wei SU Rong LUO
Shota NAKAYAMA Koichi KOBAYASHI Yuh YAMASHITA
Wataru NAKAMURA Kenta TAKAHASHI
Chunfeng FU Renjie JIN Longjiang QU Zijian ZHOU
Masaki KOBAYASHI
Shinichi NISHIZAWA Masahiro MATSUDA Shinji KIMURA
Keisuke FUKADA Tatsuhiko SHIRAI Nozomu TOGAWA
Yuta NAGAHAMA Tetsuya MANABE
Baoxian Wang Ze Gao Hongbin Xu Shoupeng Qin Zhao Tan Xuchao Shi
Maki TSUKAHARA Yusaku HARADA Haruka HIRATA Daiki MIYAHARA Yang LI Yuko HARA-AZUMI Kazuo SAKIYAMA
Guijie LIN Jianxiao XIE Zejun ZHANG
Hiroki FURUE Yasuhiko IKEMATSU
Longye WANG Lingguo KONG Xiaoli ZENG Qingping YU
Ayaka FUJITA Mashiho MUKAIDA Tadahiro AZETSU Noriaki SUETAKE
Xingan SHA Masao YANAGISAWA Youhua SHI
Jiqian XU Lijin FANG Qiankun ZHAO Yingcai WAN Yue GAO Huaizhen WANG
Sei TAKANO Mitsuji MUNEYASU Soh YOSHIDA Akira ASANO Nanae DEWAKE Nobuo YOSHINARI Keiichi UCHIDA
Kohei DOI Takeshi SUGAWARA
Yuta FUKUDA Kota YOSHIDA Takeshi FUJINO
Mingjie LIU Chunyang WANG Jian GONG Ming TAN Changlin ZHOU
Hironori UCHIKAWA Manabu HAGIWARA
Atsuko MIYAJI Tatsuhiro YAMATSUKI Tomoka TAKAHASHI Ping-Lun WANG Tomoaki MIMOTO
Kazuya TANIGUCHI Satoshi TAYU Atsushi TAKAHASHI Mathieu MOLONGO Makoto MINAMI Katsuya NISHIOKA
Masayuki SHIMODA Atsushi TAKAHASHI
Yuya Ichikawa Naoko Misawa Chihiro Matsui Ken Takeuchi
Katsutoshi OTSUKA Kazuhito ITO
Rei UEDA Tsunato NAKAI Kota YOSHIDA Takeshi FUJINO
Motonari OHTSUKA Takahiro ISHIMARU Yuta TSUKIE Shingo KUKITA Kohtaro WATANABE
Iori KODAMA Tetsuya KOJIMA
Yusuke MATSUOKA
Yosuke SUGIURA Ryota NOGUCHI Tetsuya SHIMAMURA
Tadashi WADAYAMA Ayano NAKAI-KASAI
Li Cheng Huaixing Wang
Beining ZHANG Xile ZHANG Qin WANG Guan GUI Lin SHAN
Sicheng LIU Kaiyu WANG Haichuan YANG Tao ZHENG Zhenyu LEI Meng JIA Shangce GAO
Kun ZHOU Zejun ZHANG Xu TANG Wen XU Jianxiao XIE Changbing TANG
Soh YOSHIDA Nozomi YATOH Mitsuji MUNEYASU
Ryo YOSHIDA Soh YOSHIDA Mitsuji MUNEYASU
Nichika YUGE Hiroyuki ISHIHARA Morikazu NAKAMURA Takayuki NAKACHI
Ling ZHU Takayuki NAKACHI Bai ZHANG Yitu WANG
Toshiyuki MIYAMOTO Hiroki AKAMATSU
Yanchao LIU Xina CHENG Takeshi IKENAGA
Kengo HASHIMOTO Ken-ichi IWATA
Shota TOYOOKA Yoshinobu KAJIKAWA
Kyohei SUDO Keisuke HARA Masayuki TEZUKA Yusuke YOSHIDA
Hiroshi FUJISAKI
Tota SUKO Manabu KOBAYASHI
Akira KAMATSUKA Koki KAZAMA Takahiro YOSHIDA
Tingyuan NIE Jingjing NIE Kun ZHAO
Xinyu TIAN Hongyu HAN Limengnan ZHOU Hanzhou WU
Shibo DONG Haotian LI Yifei YANG Jiatianyi YU Zhenyu LEI Shangce GAO
Kengo NAKATA Daisuke MIYASHITA Jun DEGUCHI Ryuichi FUJIMOTO
Jie REN Minglin LIU Lisheng LI Shuai LI Mu FANG Wenbin LIU Yang LIU Haidong YU Shidong ZHANG
Ken NAKAMURA Takayuki NOZAKI
Yun LIANG Degui YAO Yang GAO Kaihua JIANG
Guanqun SHEN Kaikai CHI Osama ALFARRAJ Amr TOLBA
Zewei HE Zixuan CHEN Guizhong FU Yangming ZHENG Zhe-Ming LU
Bowen ZHANG Chang ZHANG Di YAO Xin ZHANG
Zhihao LI Ruihu LI Chaofeng GUAN Liangdong LU Hao SONG Qiang FU
Kenji UEHARA Kunihiko HIRAISHI
David CLARINO Shohei KURODA Shigeru YAMASHITA
Qi QI Zi TENG Hongmei HUO Ming XU Bing BAI
Ling Wang Zhongqiang Luo
Zongxiang YI Qiuxia XU
Donghoon CHANG Deukjo HONG Jinkeon KANG
Xiaowu LI Wei CUI Runxin LI Lianyin JIA Jinguo YOU
Zhang HUAGUO Xu WENJIE Li LIANGLIANG Liao HONGSHU
Seonkyu KIM Myoungsu SHIN Hanbeom SHIN Insung KIM Sunyeop KIM Donggeun KWON Deukjo HONG Jaechul SUNG Seokhie HONG
Manabu HAGIWARA
Teruo TANIMOTO Takatsugu ONO Koji INOUE
Correctly understanding microarchitectural bottlenecks is important to optimize performance and energy of OoO (Out-of-Order) processors. Although CPI (Cycles Per Instruction) stack has been utilized for this purpose, it stacks architectural events heuristically by counting how many times the events occur, and the order of stacking affects the result, which may be misleading. It is because CPI stack does not consider the execution path of dynamic instructions. Critical path analysis (CPA) is a well-known method to identify the critical execution path of dynamic instruction execution on OoO processors. The critical path consists of the sequence of events that determines the execution time of a program on a certain processor. We develop a novel representation of CPCI stack (Cycles Per Critical Instruction stack), which is CPI stack based on CPA. The main challenge in constructing CPCI stack is how to analyze a large number of paths because CPA often results in numerous critical paths. In this paper, we show that there are more than ten to the tenth power critical paths in the execution of only one thousand instructions in 35 benchmarks out of 48 from SPEC CPU2006. Then, we propose a statistical method to analyze all the critical paths and show a case study using the benchmarks.
This paper presents an analysis of random number generators based on continuous-time chaotic oscillators. Two different methods for random number generation have been studied: 1) Regular sampling of a chaotic waveform, and 2) Chaotic sampling of a regular waveform. Kernel density estimation is used to analytically describe the distribution of chaotic state variables and the probability density function corresponding to the output bit stream. Random bit sequences are generated using analytical equations and results from numerical simulations. Applying the concepts of autocorrelation and approximate entropy, randomness quality of the generated bit sequences are assessed to analyze relationships between the frequencies of the regular and chaotic waveforms used in both random number generation methods. It is demonstrated that in both methods, there exists certain ratios between the frequencies of regular and chaotic signal at which the randomness of the output bit stream changes abruptly. Furthermore, both random number generation methods have been compared against their immunity to interference from external signals. Analysis shows that chaotic sampling of regular waveform method provides more robustness against interference compared to regular sampling of chaotic waveform method.
Dabwitso KASAUKA Kenta SUGIYAMA Hiroshi TSUTSUI Hiroyuki OKUHATA Yoshikazu MIYANAGA
In recent years, much research interest has developed in image enhancement and haze removal techniques. With increasing demand for real time enhancement and haze removal, the need for efficient architecture incorporating both haze removal and enhancement is necessary. In this paper, we propose an architecture supporting both real-time Retinex-based image enhancement and haze removal, using a single module. Efficiently leveraging the similarity between Retinex-based image enhancement and haze removal algorithms, we have successfully proposed an architecture supporting both using a single module. The implementation results reveal that just 1% logic circuits overhead is required to support Retinex-based image enhancement in single mode and haze removal based on Retinex model. This reduction in computation complexity by using a single module reduces the processing and memory implications especially in mobile consumer electronics, as opposed to implementing them individually using different modules. Furthermore, we utilize image enhancement for transmission map estimation instead of soft matting, thereby avoiding further computation complexity which would affect our goal of realizing high frame-rate real time processing. Our FPGA implementation, operating at an optimum frequency of 125MHz with 5.67M total block memory bit size, supports WUXGA (1,920×1,200) 60fps as well as 1080p60 color input. Our proposed design is competitive with existing state-of-the-art designs. Our proposal is tailored to enhance consumer electronic such as on-board cameras, active surveillance intrusion detection systems, autonomous cars, mobile streaming systems and robotics with low processing and memory requirements.
A 3Gbps/lane transmission buffer chip including a high-speed mode detector is proposed for a field-programmable gate array (FPGA)-based frame generator supporting the mobile industry processor interface (MIPI) D-PHY version 1.2. It performs 1-to-3 repeat while buffering low voltage differential signaling (LVDS) or scalable low voltage signaling (SLVS) to SLVS.
Yuanlei QI Feiran YANG Ming WU Jun YANG
The blind multichannel identification is useful in many applications. Although many approaches have been proposed to address this challenging problem, the adaptive filtering-based methods are attractive due to their computational efficiency and good convergence property. The multichannel normalized least mean-square (MCNLMS) algorithm is easy to implement, but it converges very slowly for a correlated input. The multichannel affine projection algorithm (MCAPA) is thus proposed to speed up the convergence. However, the convergence of the MCNLMS and MCAPA is still unsatisfactory in practice. In this paper, we propose a time-domain Kalman filtering approach to the blind multichannel identification problem. Specifically, the proposed adaptive Kalman filter is based on the cross relation method and also uses more past input vectors to explore the decorrelation property. Simulation results indicate that the proposed method outperforms the MCNLMS and MCAPA significantly in terms of the initial convergence and tracking capability.
Shuaihui WANG Guyu HU Zhisong PAN Jin ZHANG Dong LI
Signed networks are ubiquitous in the real world. It is of great significance to study the problem of community detection in signed networks. In general, the behaviors of nodes in a signed network are rational, which coincide with the players in the theory of game that can be used to model the process of the community formation. Unlike unsigned networks, signed networks include both positive and negative edges, representing the relationship of friends and foes respectively. In the process of community formation, nodes usually choose to be in the same community with friends and between different communities with enemies. Based on this idea, we proposed a game theory model to address the problem of community detection in signed networks. Taking nodes as players, we build a gain function based on the numbers of positive edges and negative edges inside and outside a community, and prove the existence of Nash equilibrium point. In this way, when the game reaches the Nash equilibrium state, the optimal strategy space for all nodes is the result of the final community division. To systematically investigate the performance of our method, elaborated experiments on both synthetic networks and real-world networks are conducted. Experimental results demonstrate that our method is not only more accurate than other existing algorithms, but also more robust to noise.
In secret sharing schemes for general access structures, an important issue is the number of shares distributed to each participant. However, in general, the existing schemes are impractical in this respect when the size of the access structure is very large. In 2015, a secret sharing scheme that can reduce the number of shares distributed to specified participants was proposed (the scheme A of T15). In this scheme, we can select a subset of participants and reduce the number of shares distributed to any participant who belongs to the selected subset though this scheme cannot reduce the number of shares distributed to every participant. In other words, this scheme cannot reduce the number of shares distributed to each participant who does not belong to the selected subset. In this paper, we modify the scheme A of T15 and propose a new secret sharing scheme realizing general access structures. The proposed scheme can reduce the number of shares distributed to each participant who does not belong to the selected subset as well. That is, the proposed scheme is more efficient than the scheme A of T15.
Yindong CHEN Fei GUO Hongyan XIANG Weihong CAI Xianmang HE
Rotation symmetric Boolean functions which are invariant under the action of cyclic group have been used in many different cryptosystems. This paper presents a new construction of balanced odd-variable rotation symmetric Boolean functions with optimum algebraic immunity. It is checked that, at least for some small variables, such functions have very good behavior against fast algebraic attacks. Compared with some known rotation symmetric Boolean functions with optimum algebraic immunity, the new construction has really better nonlinearity. Further, the algebraic degree of the constructed functions is also high enough.
Dong-Sun JANG Ui-Seok JEONG Gi-Hoon RYU Kyunbyoung KO
In this paper, we show exact bit error rates (BERs) for orthogonal space-time block code (OSTBC) decoded-and-forward (DF) relaying networks over independent and non-identically distributed (INID) Rayleigh fading channels. We consider both non-adaptive DF (non-ADF) and adaptive DF (ADF) schemes for OSTBC relay networks with arbitrary multiple-input multiple-output (MIMO) relay antenna configurations. For each scheme, we derive the probability density functions (PDFs) of indirect link and combined links, respectively. Based on the derived PDFs, we express exact BERs and then, their accuracy is verified by the comparison with simulation results. It is confirmed that the transmit diversity gain of the relay node can be obtained when the relay is close to the source and then, the receive diversity gain of the relay node as well as ADF gain over non-ADF can be obtained when the relay is close to the destination.
Zheng FANG Tieyong CAO Jibin YANG Meng SUN
Salient region detection is a fundamental problem in computer vision and image processing. Deep learning models perform better than traditional approaches but suffer from their huge parameters and slow speeds. To handle these problems, in this paper we propose the multi-feature fusion network (MFFN) - a efficient salient region detection architecture based on Convolution Neural Network (CNN). A novel feature extraction structure is designed to obtain feature maps from CNN. A fusion dense block is used to fuse all low-level and high-level feature maps to derive salient region results. MFFN is an end-to-end architecture which does not need any post-processing procedures. Experiments on the benchmark datasets demonstrate that MFFN achieves the state-of-the-art performance on salient region detection and requires much less parameters and computation time. Ablation experiments demonstrate the effectiveness of each module in MFFN.
In this paper, a reduction of the number of components included in direct simulation type active complex filter is proposed. The proposed method is achieved by sharing NIC's (Negative Impedance Converters) which satisfy some conditions. Compared with the conventional method, the proposed one has wide generality. As an example, a third-order complex elliptic filter is designed. The validity of the proposed method is confirmed through experiment.
Takuya KOJIMA Mamoru KUNIEDA Makoto NAKAMURA Daisuke ITO Keiji KISHINE
We present a novel burst-mode transimpedance amplifier (TIA) with a gain-mode switching. The proposed TIA utilizes a regulated-cascode (RGC) input stage for broadband characteristics. To expand a dynamic range, the RGC controls a linear operating range depending on transimpedance gains by adjusting bias conditions. This TIA is implemented using the 0.18μm-CMOS technology. The experimental results show that the proposed TIA IC has a good eye-opening and can respond quickly to the burst data.
In this letter, the differential uniformity of power function f(x)=xe over GF(3m) is studied, where m≥3 is an odd integer and $e=rac{3^m-3}{4}$. It is shown that Δf≤3 and the power function is not CCZ-equivalent to the known ones. Moreover, we consider a family of ternary cyclic code C(1,e), which is generated by mω(x)mωe(x). Herein, ω is a primitive element of GF(3m), mω(x) and mωe(x) are minimal polynomials of ω and ωe, respectively. The parameters of this family of cyclic codes are determined. It turns out that C(1,e) is optimal with respect to the Sphere Packing bound.
Feng LIU Shuping WANG Shengming JIANG Yanli XU
For the three-user X channel, its degree of freedom (DoF) 9/5 has been shown achievable theoretically through asymptotic model with infinite resources, which is impractical. In this article, we explore the propagation delay (PD) feature among different links to maximize the achievable DoF with the minimum cost. Since perfect interference alignment (IA) is impossible for 9 messages within 5 time-slots, at least one extra time-slot should be utilized. By the cyclic polynomial approach, we propose a scheme with the maximum achievable DoF of 5/3 for 10 messages within 6 time-slots. Feasibility conditions in the Euclidean space are also deduced, which demonstrates a quite wide range of node arrangements.
Sae IWATA Kazuaki ISHIKAWA Toshinori TAKAYAMA Masao YANAGISAWA Nozomu TOGAWA
Cell phones with GPS function as well as GPS loggers are widely used and we can easily obtain users' geographic information. Now classifying the measured GPS positions into indoor/outdoor positions is one of the major challenges. In this letter, we propose a robust indoor/outdoor detection method based on sparse GPS measured positions utilizing machine learning. Given a set of clusters of measured positions whose center position shows the user's estimated stayed position, we calculate the feature values composed of: positioning accuracy, spatial features, and temporal feature of measured positions included in every cluster. Then a random forest classifier learns these feature values of the known data set. Finally, we classify the unknown clusters of measured positions into indoor/outdoor clusters using the learned random forest classifier. The experiments demonstrate that our proposed method realizes the maximum F1 measure of 1.000, which classifies measured positions into indoor/outdoor ones with almost no errors.