The search functionality is under construction.
The search functionality is under construction.

IEICE TRANSACTIONS on Fundamentals

  • Impact Factor

    0.40

  • Eigenfactor

    0.003

  • article influence

    0.1

  • Cite Score

    1.1

Advance publication (published online immediately after acceptance)

Volume E107-A No.8  (Publication Date:2024/08/01)

    Regular Section
  • Backpressure Learning-Based Data Transmission Reliability-Aware Self-Organizing Networking for Power Line Communication in Distribution Network Open Access

    Zhan SHI  

     
    PAPER-Systems and Control

      Pubricized:
    2024/01/15
      Page(s):
    1076-1084

    Power line communication (PLC) provides a flexible-access, wide-distribution, and low-cost communication solution for distribution network services. However, the PLC self-organizing networking in distribution network faces several challenges such as diversified data transmission requirements guarantee, the contradiction between long-term constraints and short-term optimization, and the uncertainty of global information. To address these challenges, we propose a backpressure learning-based data transmission reliability-aware self-organizing networking algorithm to minimize the weighted sum of node data backlogs under the long-term transmission reliability constraint. Specifically, the minimization problem is transformed by the Lyapunov optimization and backpressure algorithm. Finally, we propose a backpressure and data transmission reliability-aware state-action-reward-state-action (SARSA)-based self-organizing networking strategy to realize the PLC networking optimization. Simulation results demonstrate that the proposed algorithm has superior performances of data backlogs and transmission reliability.

  • Improved PBFT-Based High Security and Large Throughput Data Resource Sharing for Distribution Power Grid Open Access

    Zhimin SHAO  Chunxiu LIU  Cong WANG  Longtan LI  Yimin LIU  Zaiyan ZHOU  

     
    PAPER-Systems and Control

      Pubricized:
    2024/01/31
      Page(s):
    1085-1097

    Data resource sharing can guarantee the reliable and safe operation of distribution power grid. However, it faces the challenges of low security and high delay in the sharing process. Consortium blockchain can ensure the security and efficiency of data resource sharing, but it still faces problems such as arbitrary master node selection and high consensus delay. In this paper, we propose an improved practical Byzantine fault tolerance (PBFT) consensus algorithm based on intelligent consensus node selection to realize high-security and real-time data resource sharing for distribution power grid. Firstly, a blockchain-based data resource sharing model is constructed to realize secure data resource storage by combining the consortium blockchain and interplanetary file system (IPFS). Then, the improved PBFT consensus algorithm is proposed to optimize the consensus node selection based on the upper confidence bound of node performance. It prevents Byzantine nodes from participating in the consensus process, reduces the consensus delay, and improves the security of data resource sharing. The simulation results verify the effectiveness of the proposed algorithm.

  • Synchronization of Canards in Coupled Canard-Generating Bonhoeffer-Van Der Pol Oscillators Subject to Weak Periodic Perturbations Open Access

    Kundan Lal DAS  Munehisa SEKIKAWA  Tadashi TSUBONE  Naohiko INABA  Hideaki OKAZAKI  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2023/11/13
      Page(s):
    1098-1105

    This paper discusses the synchronization of two identical canard-generating oscillators. First, we investigate a canard explosion generated in a system containing a Bonhoeffer-van der Pol (BVP) oscillator using the actual parameter values obtained experimentally. We find that it is possible to numerically observe a canard explosion using this dynamic oscillator. Second, we analyze the complete and in-phase synchronizations of identical canard-generating coupled oscillators via experimental and numerical methods. However, we experimentally determine that a small decrease in the coupling strength of the system induces the collapse of the complete synchronization and the occurrence of a complex synchronization; this finding could not be explained considering four-dimensional autonomous coupled BVP oscillators in our numerical work. To numerically investigate the experimental results, we construct a model containing coupled BVP oscillators that are subjected to two weak periodic perturbations having the same frequency. Further, we find that this model can efficiently numerically reproduce experimentally observed synchronization.

  • Controlling Chaotic Resonance with Extremely Local-Specific Feedback Signals Open Access

    Takahiro IINUMA  Yudai EBATO  Sou NOBUKAWA  Nobuhiko WAGATSUMA  Keiichiro INAGAKI  Hirotaka DOHO  Teruya YAMANISHI  Haruhiko NISHIMURA  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2024/01/17
      Page(s):
    1106-1114

    Stochastic resonance is a representative phenomenon in which the degree of synchronization with a weak input signal is enhanced using additive stochastic noise. In systems with multiple chaotic attractors, the chaos-chaos intermittent behavior in attractor-merging bifurcation induces chaotic resonance, which is similar to the stochastic resonance and has high sensitivity. However, controlling chaotic resonance is difficult because it requires adjusting the internal parameters from the outside. The reduced-region-of-orbit (RRO) method, which controls the attractor-merging bifurcation using an external feedback signal, is employed to overcome this issue. However, the lower perturbation of the feedback signal requires further improvement for engineering applications. This study proposed an RRO method with more sophisticated and less perturbed feedback signals, called the double-Gaussian-filtered RRO (DG-RRO) method. The inverse sign of the map function and double Gaussian filters were used to improve the local specification, i.e., the concentration around the local maximum/minimum in the feedback signals, called the DG-RRO feedback signals. Owing to their fine local specification, these signals achieved the attractor-merging bifurcation with significantly smaller feedback perturbation than that in the conventional RRO method. Consequently, chaotic resonance was induced through weak feedback perturbation. It exhibited greater synchronization against weak input signals than that induced by the conventional RRO feedback signal and sustained the same level of response frequency range as that of the conventional RRO method. These advantages may pave the way for utilizing chaotic resonance in engineering scenarios where the stochastic resonance has been applied.

  • Analytical Model of Maximum Operating Frequency of Class-D ZVS Inverter with Linearized Parasitic Capacitance and any Duty Ratio Open Access

    Yi XIONG  Senanayake THILAK  Yu YONEZAWA  Jun IMAOKA  Masayoshi YAMAMOTO  

     
    PAPER-Circuit Theory

      Pubricized:
    2023/12/05
      Page(s):
    1115-1126

    This paper proposes an analytical model of maximum operating frequency of class-D zero-voltage-switching (ZVS) inverter. The model includes linearized drain-source parasitic capacitance and any duty ratio. The nonlinear drain-source parasitic capacitance is equally linearized through a charge-related equation. The model expresses the relationship among frequency, shunt capacitance, duty ratio, load impedance, output current phase, and DC input voltage under the ZVS condition. The analytical result shows that the maximum operating frequency under the ZVS condition can be obtained when the duty ratio, the output current phase, and the DC input voltage are set to optimal values. A 650 V/30 A SiC-MOSFET is utilized for both simulated and experimental verification, resulting in good consistency.

  • A Multi-Channel Biomedical Sensor System with System-Level Chopping and Stochastic A/D Conversion Open Access

    Yusaku HIRAI  Toshimasa MATSUOKA  Takatsugu KAMATA  Sadahiro TANI  Takao ONOYE  

     
    PAPER-Circuit Theory

      Pubricized:
    2024/02/09
      Page(s):
    1127-1138

    This paper presents a multi-channel biomedical sensor system with system-level chopping and stochastic analog-to-digital (A/D) conversion techniques. The system-level chopping technique extends the input-signal bandwidth and reduces the interchannel crosstalk caused by multiplexing. The system-level chopping can replace an analog low-pass filter (LPF) with a digital filter and can reduce its area occupation. The stochastic A/D conversion technique realizes power-efficient resolution enhancement. A novel auto-calibration technique is also proposed for the stochastic A/D conversion technique. The proposed system includes a prototype analog front-end (AFE) IC fabricated using a 130 nm CMOS process. The fabricated AFE IC improved its interchannel crosstalk by 40 dB compared with the conventional analog chopping architecture. The AFE IC achieved SNDR of 62.9 dB at a sampling rate of 31.25 kSps while consuming 9.6 μW from a 1.2 V power supply. The proposed resolution enhancement technique improved the measured SNDR by 4.5 dB.

  • Efficient Wafer-Level Spatial Variation Modeling for Multi-Site RF IC Testing Open Access

    Riaz-ul-haque MIAN  Tomoki NAKAMURA  Masuo KAJIYAMA  Makoto EIKI  Michihiro SHINTANI  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2023/11/16
      Page(s):
    1139-1150

    Wafer-level performance prediction techniques have been increasingly gaining attention in production LSI testing due to their ability to reduce measurement costs without compromising test quality. Despite the availability of several efficient methods, the site-to-site variation commonly observed in multi-site testing for radio frequency circuits remains inadequately addressed. In this manuscript, we propose a wafer-level performance prediction approach for multi-site testing that takes into account the site-to-site variation. Our proposed method is built on the Gaussian process, a widely utilized wafer-level spatial correlation modeling technique, and enhances prediction accuracy by extending hierarchical modeling to leverage the test site information test engineers provide. Additionally, we propose a test-site sampling method that maximizes cost reduction while maintaining sufficient estimation accuracy. Our experimental results, which employ industrial production test data, demonstrate that our proposed method can decrease the estimation error to 1/19 of that a conventional method achieves. Furthermore, our sampling method can reduce the required measurements by 97% while ensuring satisfactory estimation accuracy.

  • Mixed-Integer Linear Optimization Formulations for Feature Subset Selection in Kernel SVM Classification Open Access

    Ryuta TAMURA  Yuichi TAKANO  Ryuhei MIYASHIRO  

     
    PAPER-Numerical Analysis and Optimization

      Pubricized:
    2024/02/08
      Page(s):
    1151-1162

    We study the mixed-integer optimization (MIO) approach to feature subset selection in nonlinear kernel support vector machines (SVMs) for binary classification. To measure the performance of subset selection, we use the distance between two classes (DBTC) in a high-dimensional feature space based on the Gaussian kernel function. However, DBTC to be maximized as an objective function is nonlinear, nonconvex and nonconcave. Despite the difficulty of linearizing such a nonlinear function in general, our major contribution is to propose a mixed-integer linear optimization (MILO) formulation to maximize DBTC for feature subset selection, and this MILO problem can be solved to optimality using optimization software. We also derive a reduced version of the MILO problem to accelerate our MILO computations. Experimental results show good computational efficiency for our MILO formulation with the reduced problem. Moreover, our method can often outperform the linear-SVM-based MILO formulation and recursive feature elimination in prediction performance, especially when there are relatively few data instances.

  • Privacy Preserving Function Evaluation Using Lookup Tables with Word-Wise FHE Open Access

    Ruixiao LI  Hayato YAMANA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/11/16
      Page(s):
    1163-1177

    Homomorphic encryption (HE) is a promising approach for privacy-preserving applications, enabling a third party to assess functions on encrypted data. However, problems persist in implementing privacy-preserving applications through HE, including 1) long function evaluation latency and 2) limited HE primitives only allowing us to perform additions and multiplications. A homomorphic lookup-table (LUT) method has emerged to solve the above problems and enhance function evaluation efficiency. By leveraging homomorphic LUTs, intricate operations can be substituted. Previously proposed LUTs use bit-wise HE, such as TFHE, to evaluate single-input functions. However, the latency increases with the bit-length of the function’s input(s) and output. Additionally, an efficient implementation of multi-input functions remains an open question. This paper proposes a novel LUT-based privacy-preserving function evaluation method to handle multi-input functions while reducing the latency by adopting word-wise HE. Our optimization strategy adjusts table sizes to minimize the latency while preserving function output accuracy, especially for common machine-learning functions. Through our experimental evaluation utilizing the BFV scheme of the Microsoft SEAL library, we confirmed the runtime of arbitrary functions whose LUTs consist of all input-output combinations represented by given input bits: 1) single-input 12-bit functions in 0.14 s, 2) single-input 18-bit functions in 2.53 s, 3) two-input 6-bit functions in 0.17 s, and 4) three-input 4-bit functions in 0.20 s, employing four threads. Besides, we confirmed that our proposed table size optimization strategy worked well, achieving 1.2 times speed up with the same absolute error of order of magnitude of -4 (a × 10-4 where 1/$\sqrt{10}$ ≤ a < $\sqrt{10})$ for Swish and 1.9 times speed up for ReLU while decreasing the absolute error from order -2 to -4 compared to the baseline, i.e., polynomial approximation.

  • Coin-Based Cryptographic Protocols without Hand Operations Open Access

    Yuta MINAMIKAWA  Kazumasa SHINAGAWA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/12/13
      Page(s):
    1178-1185

    Secure computation is a kind of cryptographic techniques that enables to compute a function while keeping input data secret. Komano and Mizuki (International Journal of Information Security 2022) proposed a model of coin-based protocols, which are secure computation protocols using physical coins. They designed AND, XOR, and COPY protocols using so-called hand operations, which move coins from one player’s palm to the other palm. However, hand operations cannot be executed when all players’ hands are occupied. In this paper, we propose coin-based protocols without hand operations. In particular, we design a three-coin NOT protocol, a seven-coin AND protocol, a six-coin XOR protocol, and a five-coin COPY protocol without hand operations. Our protocols use random flips only as shuffle operations and are enough to compute any function since they have the same format of input and output, i.e., committed-format protocols.

  • SAT-Based Analysis of Related-Key Impossible Distinguishers on Piccolo and (Tweakable) TWINE Open Access

    Shion UTSUMI  Kosei SAKAMOTO  Takanori ISOBE  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2024/02/08
      Page(s):
    1186-1195

    Lightweight block ciphers have gained attention in recent years due to the increasing demand for sensor nodes, RFID tags, and various applications. In such a situation, lightweight block ciphers Piccolo and TWINE have been proposed. Both Piccolo and TWINE are designed based on the Generalized Feistel Structure. However, it is crucial to address the potential vulnerability of these structures to the impossible differential attack. Therefore, detailed security evaluations against this attack are essential. This paper focuses on conducting bit-level evaluations of Piccolo and TWINE against related-key impossible differential attacks by leveraging SAT-aided approaches. We search for the longest distinguishers under the condition that the Hamming weight of the active bits of the input, which includes plaintext and master key differences, and output differences is set to 1, respectively. Additionally, for Tweakable TWINE, we search for the longest distinguishers under the related-tweak and related-tweak-key settings. The result for Piccolo with a 128-bit key, we identify the longest 16-round distinguishers for the first time. In addition, we also demonstrate the ability to extend these distinguishers to 17 rounds by taking into account the cancellation of the round key and plaintext difference. Regarding evaluations of TWINE with a 128-bit key, we search for the first time and reveal the distinguishers up to 19 rounds. For the search for Tweakable TWINE, we evaluate under the related-tweak-key setting for the first time and reveal the distinguishers up to 18 rounds for 80-bit key and 19 rounds for 128-bit key.

  • Improving the Security Bounds against Differential Attacks for Pholkos Family Open Access

    Nobuyuki TAKEUCHI  Kosei SAKAMOTO  Takuro SHIRAYA  Takanori ISOBE  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2024/02/08
      Page(s):
    1196-1204

    At CT-RSA 2022, Bossert et al. proposed Pholkos family, an efficient large-state tweakable block cipher. In order to evaluate the security of differential attacks on Pholkos, they obtained the lower bounds for the number of active S-boxes for Pholkos using MILP (Mixed Integer Linear Programming) tools. Based on it, they claimed that Pholkos family is secure against differential attacks. However, they only gave rough security bounds in both of related-tweak and related-tweakey settings. To be more precise, they estimated the lower bounds of the number of active S-boxes for relatively-large number of steps by just summing those in the small number of steps. In this paper, we utilize efficient search methods based on MILP to obtain tighter lower bounds for the number of active S-boxes in a larger number of steps. For the first time, we derive the exact minimum number of active S-boxes of each variant up to the steps where the security against differential attacks can be ensured in related-tweak and related-tweakey settings. Our results indicate that Pholkos-256-128/256-256/512/1024 is secure after 4/5/3/4 steps in the related-tweak setting, and after 5/6/3/4 steps in the related-tweakey setting, respectively. Our results enable reducing the required number of steps to be secure against differential attacks of Pholkos-256-256 in related-tweak setting, and Pholkos-256-128/256 and Pholkos-1024 in the related-tweakey setting by one step, respectively.

  • New Classes of Permutation Quadrinomials Over 𝔽q3 Open Access

    Changhui CHEN  Haibin KAN  Jie PENG  Li WANG  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/12/27
      Page(s):
    1205-1211

    Permutation polynomials have been studied for a long time and have important applications in cryptography, coding theory and combinatorial designs. In this paper, by means of the multivariate method and the resultant, we propose four new classes of permutation quadrinomials over 𝔽q3, where q is a prime power. We also show that they are not quasi-multiplicative equivalent to known ones. Moreover, we compare their differential uniformity with that of some known classes of permutation trinomials for some small q.

  • Accurate False-Positive Probability of Multiset-Based Demirci-Selçuk Meet-in-the-Middle Attacks Open Access

    Dongjae LEE  Deukjo HONG  Jaechul SUNG  Seokhie HONG  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2024/03/15
      Page(s):
    1212-1228

    In this study, we focus on evaluating the false-positive probability of the Demirci-Selçuk meet-in-the-middle attack, particularly within the context of configuring precomputed tables with multisets. During the attack, the adversary effectively reduces the size of the key space by filtering out the wrong keys, subsequently recovering the master key from the reduced key space. The false-positive probability is defined as the probability that a wrong key will pass through the filtering process. Due to its direct impact on the post-filtering key space size, the false-positive probability is an important factor that influences the complexity and feasibility of the attack. However, despite its significance, the false-positive probability of the multiset-based Demirci-Selçuk meet-in-the-middle attack has not been thoroughly discussed, to the best of our knowledge. We generalize the Demirci-Selçuk meet-in-the-middle attack and present a sophisticated method for accurately calculating the false-positive probability. We validate our methodology through toy experiments, demonstrating its high precision. Additionally, we propose a method to optimize an attack by determining the optimal format of precomputed data, which requires the precise false-positive probability. Applying our approach to previous attacks on AES and ARIA, we have achieved modest improvements. Specifically, we enhance the memory complexity and time complexity of the offline phase of previous attacks on 7-round AES-128/192/256, 7-round ARIA-192/256, and 8-round ARIA-256 by factors ranging from 20.56 to 23. Additionally, we have improved the overall time complexity of attacks on 7-round ARIA-192/256 by factors of 20.13 and 20.42, respectively.

  • Feistel Ciphers Based on a Single Primitive Open Access

    Kento TSUJI  Tetsu IWATA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2024/03/29
      Page(s):
    1229-1240

    We consider Feistel ciphers instantiated with tweakable block ciphers (TBCs) and ideal ciphers (ICs). The indistinguishability security of the TBC-based Feistel cipher is known, and the indifferentiability security of the IC-based Feistel cipher is also known, where independently keyed TBCs and independent ICs are assumed. In this paper, we analyze the security of a single-keyed TBC-based Feistel cipher and a single IC-based Feistel cipher. We characterize the security depending on the number of rounds. More precisely, we cover the case of contracting Feistel ciphers that have d ≥ 2 lines, and the results on Feistel ciphers are obtained as a special case by setting d = 2. Our indistinguishability security analysis shows that it is provably secure with d + 1 rounds. Our indifferentiability result shows that, regardless of the number of rounds, it cannot be secure. Our attacks are a type of a slide attack, and we consider a structure that uses a round constant, which is a well-known countermeasure against slide attacks. We show an indifferentiability attack for the case d = 2 and 3 rounds.

  • Constructions of 2-Correlation Immune Rotation Symmetric Boolean Functions Open Access

    Jiao DU  Ziwei ZHAO  Shaojing FU  Longjiang QU  Chao LI  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2024/03/22
      Page(s):
    1241-1246

    In this paper, we first recall the concept of 2-tuples distribution matrix, and further study its properties. Based on these properties, we find four special classes of 2-tuples distribution matrices. Then, we provide a new sufficient and necessary condition for n-variable rotation symmetric Boolean functions to be 2-correlation immune. Finally, we give a new method for constructing such functions when n=4t - 1 is prime, and we show an illustrative example.

  • Advance Sharing of Quantum Shares for Quantum Secrets Open Access

    Mamoru SHIBATA  Ryutaroh MATSUMOTO  

     
    PAPER-Information Theory

      Pubricized:
    2023/11/24
      Page(s):
    1247-1254

    Secret sharing is a cryptographic scheme to encode a secret to multiple shares being distributed to participants, so that only qualified sets of participants can restore the original secret from their shares. When we encode a secret by a secret sharing scheme and distribute shares, sometimes not all participants are accessible, and it is desirable to distribute shares to those participants before a secret information is determined. Secret sharing schemes for classical secrets have been known to be able to distribute some shares before a given secret. Lie et al. found a ((2, 3))-threshold secret sharing for quantum secrets can distribute some shares before a given secret. However, it is unknown whether distributing some shares before a given secret is possible with other access structures of secret sharing for quantum secrets. We propose a quantum secret sharing scheme for quantum secrets that can distribute some shares before a given secret with other access structures.

  • Experimental Evaluations on Learning-Based Inter-Radar Wideband Interference Mitigation Method Open Access

    Ryoto KOIZUMI  Xiaoyan WANG  Masahiro UMEHIRA  Ran SUN  Shigeki TAKEDA  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2024/01/11
      Page(s):
    1255-1264

    In recent years, high-resolution 77 GHz band automotive radar, which is indispensable for autonomous driving, has been extensively investigated. In the future, as vehicle-mounted CS (chirp sequence) radars become more and more popular, intensive inter-radar wideband interference will become a serious problem, which results in undesired miss detection of targets. To address this problem, learning-based wideband interference mitigation method has been proposed, and its feasibility has been validated by simulations. In this paper, firstly we evaluated the trade-off between interference mitigation performance and model training time of the learning-based interference mitigation method in a simulation environment. Secondly, we conducted extensive inter-radar interference experiments by using multiple 77 GHz MIMO (Multiple-Input and Multiple-output) CS radars and collected real-world interference data. Finally, we compared the performance of learning-based interference mitigation method with existing algorithm-based methods by real experimental data in terms of SINR (signal to interference plus noise ratio) and MAPE (mean absolute percentage error).

  • RIS-Assisted MIMO OFDM Dual-Function Radar-Communication Based on Mutual Information Optimization Open Access

    Nihad A. A. ELHAG  Liang LIU  Ping WEI  Hongshu LIAO  Lin GAO  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2024/03/15
      Page(s):
    1265-1276

    The concept of dual function radar-communication (DFRC) provides solution to the problem of spectrum scarcity. This paper examines a multiple-input multiple-output (MIMO) DFRC system with the assistance of a reconfigurable intelligent surface (RIS). The system is capable of sensing multiple spatial directions while serving multiple users via orthogonal frequency division multiplexing (OFDM). The objective of this study is to design the radiated waveforms and receive filters utilized by both the radar and users. The mutual information (MI) is used as an objective function, on average transmit power, for multiple targets while adhering to constraints on power leakage in specific directions and maintaining each user’s error rate. To address this problem, we propose an optimal solution based on a computational genetic algorithm (GA) using bisection method. The performance of the solution is demonstrated by numerical examples and it is shown that, our proposed algorithm can achieve optimum MI and the use of RIS with the MIMO DFRC system improving the system performance.

  • A Joint Coverage Constrained Task Offloading and Resource Allocation Method in MEC Open Access

    Daxiu ZHANG  Xianwei LI  Bo WEI  Yukun SHI  

     
    PAPER-Mobile Information Network and Personal Communications

      Page(s):
    1277-1285

    With the increase of the number of Mobile User Equipments (MUEs), numerous tasks that with high requirements of resources are generated. However, the MUEs have limited computational resources, computing power and storage space. In this paper, a joint coverage constrained task offloading and resource allocation method based on deep reinforcement learning is proposed. The aim is offloading the tasks that cannot be processed locally to the edge servers to alleviate the conflict between the resource constraints of MUEs and the high performance task processing. The studied problem considers the dynamic variability and complexity of the system model, coverage, offloading decisions, communication relationships and resource constraints. An entropy weight method is used to optimize the resource allocation process and balance the energy consumption and execution time. The results of the study show that the number of tasks and MUEs affects the execution time and energy consumption of the task offloading and resource allocation processes in the interest of the service provider, and enhances the user experience.

  • Edge Device Verification Techniques for Updated Object Detection AI via Target Object Existence Open Access

    Akira KITAYAMA  Goichi ONO  Hiroaki ITO  

     
    PAPER-Intelligent Transport System

      Pubricized:
    2023/12/20
      Page(s):
    1286-1295

    Edge devices with strict safety and reliability requirements, such as autonomous driving cars, industrial robots, and drones, necessitate software verification on such devices before operation. The human cost and time required for this analysis constitute a barrier in the cycle of software development and updating. In particular, the final verification at the edge device should at least strictly confirm that the updated software is not degraded from the current it. Since the edge device does not have the correct data, it is necessary for a human to judge whether the difference between the updated software and the operating it is due to degradation or improvement. Therefore, this verification is very costly. This paper proposes a novel automated method for efficient verification on edge devices of an object detection AI, which has found practical use in various applications. In the proposed method, a target object existence detector (TOED) (a simple binary classifier) judges whether an object in the recognition target class exists in the region of a prediction difference between the AI’s operating and updated versions. Using the results of this TOED judgement and the predicted difference, an automated verification system for the updated AI was constructed. TOED was designed as a simple binary classifier with four convolutional layers, and the accuracy of object existence judgment was evaluated for the difference between the predictions of the YOLOv5 L and X models using the Cityscapes dataset. The results showed judgement with more than 99.5% accuracy and 8.6% over detection, thus indicating that a verification system adopting this method would be more efficient than simple analysis of the prediction differences.

  • CPNet: Covariance-Improved Prototype Network for Limited Samples Masked Face Recognition Using Few-Shot Learning Open Access

    Sendren Sheng-Dong XU  Albertus Andrie CHRISTIAN  Chien-Peng HO  Shun-Long WENG  

     
    PAPER-Image

      Pubricized:
    2023/12/11
      Page(s):
    1296-1308

    During the COVID-19 pandemic, a robust system for masked face recognition has been required. Most existing solutions used many samples per identity for the model to recognize, but the processes involved are very laborious in a real-life scenario. Therefore, we propose “CPNet” as a suitable and reliable way of recognizing masked faces from only a few samples per identity. The prototype classifier uses a few-shot learning paradigm to perform the recognition process. To handle complex and occluded facial features, we incorporated the covariance structure of the classes to refine the class distance calculation. We also used sharpness-aware minimization (SAM) to improve the classifier. Extensive in-depth experiments on a variety of datasets show that our method achieves remarkable results with accuracy as high as 95.3%, which is 3.4% higher than that of the baseline prototype network used for comparison.

  • Joint 2D and 3D Semantic Segmentation with Consistent Instance Semantic Open Access

    Yingcai WAN  Lijin FANG  

     
    PAPER-Image

      Pubricized:
    2023/12/15
      Page(s):
    1309-1318

    2D and 3D semantic segmentation play important roles in robotic scene understanding. However, current 3D semantic segmentation heavily relies on 3D point clouds, which are susceptible to factors such as point cloud noise, sparsity, estimation and reconstruction errors, and data imbalance. In this paper, a novel approach is proposed to enhance 3D semantic segmentation by incorporating 2D semantic segmentation from RGB-D sequences. Firstly, the RGB-D pairs are consistently segmented into 2D semantic maps using the tracking pipeline of Simultaneous Localization and Mapping (SLAM). This process effectively propagates object labels from full scans to corresponding labels in partial views with high probability. Subsequently, a novel Semantic Projection (SP) block is introduced, which integrates features extracted from localized 2D fragments across different camera viewpoints into their corresponding 3D semantic features. Lastly, the 3D semantic segmentation network utilizes a combination of 2D-3D fusion features to facilitate a merged semantic segmentation process for both 2D and 3D. Extensive experiments conducted on public datasets demonstrate the effective performance of the proposed 2D-assisted 3D semantic segmentation method.

  • Convolutional Neural Network Based on Regional Features and Dimension Matching for Skin Cancer Classification Open Access

    Zhichao SHA  Ziji MA  Kunlai XIONG  Liangcheng QIN  Xueying WANG  

     
    PAPER-Image

      Page(s):
    1319-1327

    Diagnosis at an early stage is clinically important for the cure of skin cancer. However, since some skin cancers have similar intuitive characteristics, and dermatologists rely on subjective experience to distinguish skin cancer types, the accuracy is often suboptimal. Recently, the introduction of computer methods in the medical field has better assisted physicians to improve the recognition rate but some challenges still exist. In the face of massive dermoscopic image data, residual network (ResNet) is more suitable for learning feature relationships inside big data because of its deeper network depth. Aiming at the deficiency of ResNet, this paper proposes a multi-region feature extraction and raising dimension matching method, which further improves the utilization rate of medical image features. This method firstly extracted rich and diverse features from multiple regions of the feature map, avoiding the deficiency of traditional residual modules repeatedly extracting features in a few fixed regions. Then, the fused features are strengthened by up-dimensioning the branch path information and stacking it with the main path, which solves the problem that the information of two paths is not ideal after fusion due to different dimensionality. The proposed method is experimented on the International Skin Imaging Collaboration (ISIC) Archive dataset, which contains more than 40,000 images. The results of this work on this dataset and other datasets are evaluated to be improved over networks containing traditional residual modules and some popular networks.

  • CyCSNet: Learning Cycle-Consistency of Semantics for Weakly-Supervised Semantic Segmentation Open Access

    Zhikui DUAN  Xinmei YU  Yi DING  

     
    PAPER-Computer Graphics

      Pubricized:
    2023/12/11
      Page(s):
    1328-1337

    Existing weakly-supervised segmentation approaches based on image-level annotations may focus on the most activated region in the image and tend to identify only part of the target object. Intuitively, high-level semantics among objects of the same category in different images could help to recognize corresponding activated regions of the query. In this study, a scheme called Cycle-Consistency of Semantics Network (CyCSNet) is proposed, which can enhance the activation of the potential inactive regions of the target object by utilizing the cycle-consistent semantics from images of the same category in the training set. Moreover, a Dynamic Correlation Feature Selection (DCFS) algorithm is derived to reduce the noise from pixel-wise samples of low relevance for better training. Experiments on the PASCAL VOC 2012 dataset show that the proposed CyCSNet achieves competitive results compared with state-of-the-art weakly-supervised segmentation approaches.

  • Optimization of Multi-Component Olfactory Display Using Inkjet Devices Open Access

    Hiroya HACHIYAMA  Takamichi NAKAMOTO  

     
    PAPER-Multimedia Environment Technology

      Pubricized:
    2023/12/28
      Page(s):
    1338-1344

    Devices presenting audiovisual information are widespread, but few ones presenting olfactory information. We have developed a device called an olfactory display that presents odors to users by mixing multiple fragrances. Previously developed olfactory displays had the problem that the ejection volume of liquid perfume droplets was large and the dynamic range of the blending ratio was small. In this study, we used an inkjet device that ejects small droplets in order to expand the dynamic range of blending ratios to present a variety of scents. By finely controlling the back pressure using an electro-osmotic pump (EO pump) and adjusting the timing of EO pump and inkjet device, we succeeded in stabilizing the ejection of the inkjet device and we can have large dynamic range.

  • A Combination Method for Impedance Extraction of SMD Electronic Components Based on Full-Wave Simulation and De-Embedding Technique Open Access

    Yang XIAO  Zhongyuan ZHOU  Mingjie SHENG  Qi ZHOU  

     
    PAPER-Measurement Technology

      Pubricized:
    2024/02/15
      Page(s):
    1345-1354

    The method of extracting impedance parameters of surface mounted (SMD) electronic components by test is suitable for components with unknown model or material information, but requires consideration of errors caused by non-coaxial and measurement fixtures. In this paper, a fixture for impedance measurement is designed according to the characteristics of passive devices, and the fixture de-embedding method is used to eliminate errors and improve the test accuracy. The method of obtaining S parameters of fixture based on full wave simulation proposed in this paper can provide a thought for obtaining S parameters in de-embedding. Taking a certain patch capacitor as an example, the S parameters for de-embedding were obtained using methods based on full wave simulation, 2×Thru, and ADS simulation, and de-embedding tests were conducted. The results indicate that obtaining the S parameter of the testing fixture based on full wave simulation and conducting de-embedding testing compared to ADS simulation can accurately extract the impedance parameters of SMD electronic components, which provides a reference for the study of electromagnetic interference (EMI) coupling mechanism.

  • Improved Source Localization Method of the Small-Aperture Array Based on the Parasitic Fly’s Coupled Ears and MUSIC-Like Algorithm Open Access

    Hongbo LI  Aijun LIU  Qiang YANG  Zhe LYU  Di YAO  

     
    LETTER-Noise and Vibration

      Pubricized:
    2023/12/08
      Page(s):
    1355-1359

    To improve the direction-of-arrival estimation performance of the small-aperture array, we propose a source localization method inspired by the Ormia fly’s coupled ears and MUSIC-like algorithm. The Ormia can local its host cricket’s sound precisely despite the tremendous incompatibility between the spacing of its ear and the sound wavelength. In this paper, we first implement a biologically inspired coupled system based on the coupled model of the Ormia’s ears and solve its responses by the modal decomposition method. Then, we analyze the effect of the system on the received signals of the array. Research shows that the system amplifies the amplitude ratio and phase difference between the signals, equivalent to creating a virtual array with a larger aperture. Finally, we apply the MUSIC-like algorithm for DOA estimation to suppress the colored noise caused by the system. Numerical results demonstrate that the proposed method can improve the localization precision and resolution of the array.

  • Extraction of Weak Harmonic Target Signal from Ionospheric Noise of High Frequency Surface Wave Radar Open Access

    Xiaolong ZHENG  Bangjie LI  Daqiao ZHANG  Di YAO  Xuguang YANG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2024/01/23
      Page(s):
    1360-1363

    High Frequency Surface Wave Radar holds significant potential in sea detection. However, the target signals are often surpassed by substantial sea clutter and ionospheric clutter, making it crucial to address clutter suppression and extract weak target signals amidst the strong noise background.This study proposes a novel method for separating weak harmonic target signals based on local tangent space, leveraging the chaotic feature of ionospheric clutter.The effectiveness of this approach is demonstrated through the analysis of measured data, thereby validating its practicality and potential for real-world applications.

  • Triangle Projection Algorithm in ADMM-LP Decoding of LDPC Codes Open Access

    Yun JIANG  Huiyang LIU  Xiaopeng JIAO  Ji WANG  Qiaoqiao XIA  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2024/03/18
      Page(s):
    1364-1368

    In this letter, a novel projection algorithm is proposed in which projection onto a triangle consisting of the three even-vertices closest to the vector to be projected replaces check polytope projection, achieving the same FER performance as exact projection algorithm in both high-iteration and low-iteration regime. Simulation results show that compared with the sparse affine projection algorithm (SAPA), it can improve the FER performance by 0.2 dB as well as save average number of iterations by 4.3%.

  • Data-Reuse Extended NLMS Algorithm Based on Optimized Time-Varying Step-Size for System Identification Open Access

    Hakan BERCAG  Osman KUKRER  Aykut HOCANIN  

     
    LETTER-Analog Signal Processing

      Pubricized:
    2024/01/11
      Page(s):
    1369-1373

    A new extended normalized least-mean-square (ENLMS) algorithm is proposed. A novel non-linear time-varying step-size (NLTVSS) formula is derived. The convergence rate of ENLMS increases due to NLTVSS as the number of data-reuse L is increased. ENLMS does not involve matrix inversion, and, thus, avoids numerical instability issues.

  • Zero-Order-Hold Triggered Control of a Chain of Integrators with an Arbitrary Sampling Period Open Access

    Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Pubricized:
    2023/12/25
      Page(s):
    1374-1377

    We propose a zero-order-hold triggered control for a chain of integrators with an arbitrary sampling period. We analytically show that our control scheme globally asymptotically stabilizes the considered system. The key feature is that the pre-specified sampling period can be enlarged as desired by adjusting a gain-scaling factor. An example with various simulation results is given for clear illustration.

  • Permanent Magnet Synchronous Motor Speed Control System Based on Fractional Order Integral Sliding Mode Control Open Access

    Jun-Feng LIU  Yuan FENG  Zeng-Hui LI  Jing-Wei TANG  

     
    LETTER-Systems and Control

      Pubricized:
    2024/03/04
      Page(s):
    1378-1381

    To improve the control performance of the permanent magnet synchronous motor speed control system, the fractional order calculus theory is combined with the sliding mode control to design the fractional order integral sliding mode sliding mode surface (FOISM) to improve the robustness of the system. Secondly, considering the existence of chattering phenomenon in sliding mode control, a new second-order sliding mode reaching law (NSOSMRL) is designed to improve the control accuracy of the system. Finally, the effectiveness of the proposed strategy is demonstrated by simulation.

  • Search for 9-Variable Boolean Functions with the Optimal Algebraic Immunity-Resiliency Trade-Off and High Nonlinearity Open Access

    Yueying LOU  Qichun WANG  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2024/03/28
      Page(s):
    1382-1385

    Boolean functions play an important role in symmetric ciphers. One of important open problems on Boolean functions is determining the maximum possible resiliency order of n-variable Boolean functions with optimal algebraic immunity. In this letter, we search Boolean functions in the rotation symmetric class, and determine the maximum possible resiliency order of 9-variable Boolean functions with optimal algebraic immunity. Moreover, the maximum possible nonlinearity of 9-variable rotation symmetric Boolean functions with optimal algebraic immunity-resiliency trade-off is determined to be 224.

  • New Constructions of Approximately Mutually Unbiased Bases by Character Sums over Galois Rings Open Access

    You GAO  Ming-Yue XIE  Gang WANG  Lin-Zhi SHEN  

     
    LETTER-Information Theory

      Pubricized:
    2024/02/07
      Page(s):
    1386-1390

    Mutually unbiased bases (MUBs) are widely used in quantum information processing and play an important role in quantum cryptography, quantum state tomography and communications. It’s difficult to construct MUBs and remains unknown whether complete MUBs exist for any non prime power. Therefore, researchers have proposed the solution to construct approximately mutually unbiased bases (AMUBs) by weakening the inner product conditions. This paper constructs q AMUBs of ℂq, (q + 1) AMUBs of ℂq-1 and q AMUBs of ℂq-1 by using character sums over Galois rings and finite fields, where q is a power of a prime. The first construction of q AMUBs of ℂq is new which illustrates K AMUBs of ℂK can be achieved. The second and third constructions in this paper include the partial results about AMUBs constructed by W. Wang et al. in [9].

  • A New Construction of Three-Phase Z-Complementary Triads Based on Extended Boolean Functions Open Access

    Xiuping PENG  Yinna LIU  Hongbin LIN  

     
    LETTER-Information Theory

      Pubricized:
    2024/02/15
      Page(s):
    1391-1394

    In this letter, we propose a novel direct construction of three-phase Z-complementary triads with flexible lengths and various widths of the zero-correlation zone based on extended Boolean functions. The maximum width ratio of the zero-correlation zone of the construction can reach 3/4. And the proposed sequences can exist for all lengths other than powers of three. We also investigate the peak-to-average power ratio properties of the proposed ZCTs.

  • An Investigation on LP Decoding of Short Binary Linear Codes With the Subgradient Method Open Access

    Haiyang LIU  Xiaopeng JIAO  Lianrong MA  

     
    LETTER-Coding Theory

      Pubricized:
    2023/11/21
      Page(s):
    1395-1399

    In this letter, we investigate the application of the subgradient method to design efficient algorithm for linear programming (LP) decoding of binary linear codes. A major drawback of the original formulation of LP decoding is that the description complexity of the feasible region is exponential in the check node degrees of the code. In order to tackle the problem, we propose a processing technique for LP decoding with the subgradient method, whose complexity is linear in the check node degrees. Consequently, a message-passing type decoding algorithm can be obtained, whose per-iteration complexity is extremely low. Moreover, if the algorithm converges to a valid codeword, it is guaranteed to be a maximum likelihood codeword. Simulation results on several binary linear codes with short lengths suggest that the performances of LP decoding based on the subgradient method and the state-of-art LP decoding implementation approach are comparable.

  • CTU-Level Adaptive QP Offset Algorithm for V-PCC Using JND and Spatial Complexity Open Access

    Mengmeng ZHANG  Zeliang ZHANG  Yuan LI  Ran CHENG  Hongyuan JING  Zhi LIU  

     
    LETTER-Coding Theory

      Page(s):
    1400-1403

    Point cloud video contains not only color information but also spatial position information and usually has large volume of data. Typical rate distortion optimization algorithms based on Human Visual System only consider the color information, which limit the coding performance. In this paper, a Coding Tree Unit (CTU) level quantization parameter (QP) adjustment algorithm based on JND and spatial complexity is proposed to improve the subjective and objective quality of Video-Based Point Cloud Compression (V-PCC). Firstly, it is found that the JND model is degraded at CTU level for attribute video due to the pixel filling strategy of V-PCC, and an improved JND model is designed using the occupancy map. Secondly, a spatial complexity detection metric is designed to measure the visual importance of each CTU. Finally, a CTU-level QP adjustment scheme based on both JND levels and visual importance is proposed for geometry and attribute video. The experimental results show that, compared with the latest V-PCC (TMC2-18.0) anchors, the BD-rate is reduced by -2.8% and -3.2% for D1 and D2 metrics, respectively, and the subjective quality is improved significantly.

  • Delay Improvement in Hierarchical Multi-Access Edge Computing Networks Open Access

    Ngoc-Tan NGUYEN  Trung-Duc NGUYEN  Nam-Hoang NGUYEN  Trong-Minh HOANG  

     
    LETTER-Communication Theory and Signals

      Page(s):
    1404-1407

    Multi-access edge computing (MEC) is an emerging technology of 5G and beyond mobile networks which deploys computation services at edge servers for reducing service delay. However, edge servers may have not enough computation capabilities to satisfy the delay requirement of services. Thus, heavy computation tasks need to be offloaded to other MEC servers. In this paper, we propose an offloading solution, called optimal delay offloading (ODO) solution, that can guarantee service delay requirements. Specificially, this method exploits an estimation of queuing delay among MEC servers to find a proper offloading server with the lowest service delay to offload the computation task. Simulation results have proved that the proposed ODO method outperforms the conventional methods, i.e., the non-offloading and the energy-efficient offloading [10] methods (up to 1.6 times) in terms of guaranteeing the service delay under a threshold.

  • An Optimized CNN-Attention Network for Clipped OFDM Receiver of Underwater Acoustic Communications Open Access

    Feng LIU  Qian XI  Yanli XU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/12/01
      Page(s):
    1408-1412

    In underwater acoustic communication systems based on orthogonal frequency division multiplexing (OFDM), taking clipping to reduce the peak-to-average power ratio leads to nonlinear distortion of the signal, making the receiver unable to recover the faded signal accurately. In this letter, an Aquila optimizer-based convolutional attention block stacked network (AO-CABNet) is proposed to replace the receiver to improve the ability to recover the original signal. Simulation results show that the AO method has better optimization capability to quickly obtain the optimal parameters of the network model, and the proposed AO-CABNet structure outperforms existing schemes.

  • Deep Learning-Based CSI Feedback for Terahertz Ultra-Massive MIMO Systems Open Access

    Yuling LI  Aihuang GUO  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/12/01
      Page(s):
    1413-1416

    Terahertz (THz) ultra-massive multiple-input multiple-output (UM-MIMO) is envisioned as a key enabling technology of 6G wireless communication. In UM-MIMO systems, downlink channel state information (CSI) has to be fed to the base station for beamforming. However, the feedback overhead becomes unacceptable because of the large antenna array. In this letter, the characteristic of CSI is explored from the perspective of data distribution. Based on this characteristic, a novel network named Attention-GRU Net (AGNet) is proposed for CSI feedback. Simulation results show that the proposed AGNet outperforms other advanced methods in the quality of CSI feedback in UM-MIMO systems.

  • Dynamic Hybrid Beamforming-Based HAP Massive MIMO with Statistical CSI Open Access

    Pingping JI  Lingge JIANG  Chen HE  Di HE  Zhuxian LIAN  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/12/25
      Page(s):
    1417-1420

    In this letter, we study the dynamic antenna grouping and the hybrid beamforming for high altitude platform (HAP) massive multiple-input multiple-output (MIMO) systems. We first exploit the fact that the ergodic sum rate is only related to statistical channel state information (SCSI) in the large-scale array regime, and then we utilize it to perform the dynamic antenna grouping and design the RF beamformer. By applying the Gershgorin Circle Theorem, the dynamic antenna grouping is realized based on the novel statistical distance metric instead of the value of the instantaneous channels. The RF beamformer is designed according to the singular value decomposition of the statistical correlation matrix according to the obtained dynamic antenna group. Dynamic subarrays mean each RF chain is linked with a dynamic antenna sub-set. The baseband beamformer is derived by utilizing the zero forcing (ZF). Numerical results demonstrate the performance enhancement of our proposed dynamic hybrid precoding (DHP) algorithm.

  • An Efficiency-Enhancing Wideband OFDM Dual-Function MIMO Radar-Communication System Design Open Access

    Yumeng ZHANG  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2024/03/04
      Page(s):
    1421-1424

    Integrated Sensing and Communication at terahertz band (ISAC-THz) has been considered as one of the promising technologies for the future 6G. However, in the phase-shifters (PSs) based massive multiple-input-multiple-output (MIMO) hybrid precoding system, due to the ultra-large bandwidth of the terahertz frequency band, the subcarrier channels with different frequencies have different equivalent spatial directions. Therefore, the hybrid beamforming at the transmitter will cause serious beam split problems. In this letter, we propose a dual-function radar communication (DFRC) precoding method by considering recently proposed delay-phase precoding structure for THz massive MIMO. By adding delay phase components between the radio frequency chain and the frequency-independent PSs, the beam is aligned with the target physical direction over the entire bandwidth to reduce the loss caused by beam splitting effect. Furthermore, we employ a hardware structure by using true-time-delayers (TTDs) to realize the concept of frequency-dependent phase shifts. Theoretical analysis and simulation results have shown that it can increase communication performance and make up for the performance loss caused by the dual-function trade-off of communication radar to a certain extent.

  • Peak-to-Average Power Ratio Reduction Scheme in DCO-OFDM with a Combined Index Modulation and Convex Optimization Open Access

    Menglong WU  Jianwen ZHANG  Yongfa XIE  Yongchao SHI  Tianao YAO  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2024/03/22
      Page(s):
    1425-1429

    Direct-current biased optical orthogonal frequency division multiplexing (DCO-OFDM) exhibits a high peak-to-average power ratio (PAPR), which leads to nonlinear distortion in the system. In response to the above, the study proposes a scheme that combines direct-current biased optical orthogonal frequency division multiplexing with index modulation (DCO-OFDM-IM) and convex optimization algorithms. The proposed scheme utilizes partially activated subcarriers of the system to transmit constellation modulated symbol information, and transmits additional symbol information of the system through the combination of activated carrier index. Additionally, a dither signal is added to the system’s idle subcarriers, and the convex optimization algorithm is applied to solve for the optimal values of this dither signal. Therefore, by ensuring the system’s peak power remains unchanged, the scheme enhances the system’s average transmission power and thus achieves a reduction in the PAPR. Experimental results indicate that at a system’s complementary cumulative distribution function (CCDF) of 10-4, the proposed scheme reduces the PAPR by approximately 3.5 dB compared to the conventional DCO-OFDM system. Moreover, at a bit error rate (BER) of 10-3, the proposed scheme can lower the signal-to-noise ratio (SNR) by about 1 dB relative to the traditional DCO-OFDM system. Therefore, the proposed scheme enables a more substantial reduction in PAPR and improvement in BER performance compared to the conventional DCO-OFDM approach.

  • Video Reflection Removal by Modified EDVR and 3D Convolution Open Access

    Sota MORIYAMA  Koichi ICHIGE  Yuichi HORI  Masayuki TACHI  

     
    LETTER-Image

      Pubricized:
    2023/12/11
      Page(s):
    1430-1434

    In this paper, we propose a method for video reflection removal using a video restoration framework with enhanced deformable networks (EDVR). We examine the effect of each module in EDVR on video reflection removal and modify the models using 3D convolutions. The performance of each modified model is evaluated in terms of the RMSE between the structural similarity (SSIM) and the smoothed SSIM representing temporal consistency.

  • A Dual-Branch Algorithm for Semantic-Focused Face Super-Resolution Reconstruction Open Access

    Qi QI  Liuyi MENG  Ming XU  Bing BAI  

     
    LETTER-Image

      Pubricized:
    2024/03/18
      Page(s):
    1435-1439

    In face super-resolution reconstruction, the interference caused by the texture and color of the hair region on the details and contours of the face region can negatively affect the reconstruction results. This paper proposes a semantic-based, dual-branch face super-resolution algorithm to address the issue of varying reconstruction complexities and mutual interference among different pixel semantics in face images. The algorithm clusters pixel semantic data to create a hierarchical representation, distinguishing between facial pixel regions and hair pixel regions. Subsequently, independent image enhancement is applied to these distinct pixel regions to mitigate their interference, resulting in a vivid, super-resolution face image.