Zhenhai TAN Yun YANG Xiaoman WANG Fayez ALQAHTANI
Chenrui CHANG Tongwei LU Feng YAO
Takuma TSUCHIDA Rikuho MIYATA Hironori WASHIZAKI Kensuke SUMOTO Nobukazu YOSHIOKA Yoshiaki FUKAZAWA
Shoichi HIROSE Kazuhiko MINEMATSU
Toshimitsu USHIO
Yuta FUKUDA Kota YOSHIDA Takeshi FUJINO
Qingping YU Yuan SUN You ZHANG Longye WANG Xingwang LI
Qiuyu XU Kanghui ZHAO Tao LU Zhongyuan WANG Ruimin HU
Lei Zhang Xi-Lin Guo Guang Han Di-Hui Zeng
Meng HUANG Honglei WEI
Yang LIU Jialong WEI Shujian ZHAO Wenhua XIE Niankuan CHEN Jie LI Xin CHEN Kaixuan YANG Yongwei LI Zhen ZHAO
Ngoc-Son DUONG Lan-Nhi VU THI Sinh-Cong LAM Phuong-Dung CHU THI Thai-Mai DINH THI
Lan XIE Qiang WANG Yongqiang JI Yu GU Gaozheng XU Zheng ZHU Yuxing WANG Yuwei LI
Jihui LIU Hui ZHANG Wei SU Rong LUO
Shota NAKAYAMA Koichi KOBAYASHI Yuh YAMASHITA
Wataru NAKAMURA Kenta TAKAHASHI
Chunfeng FU Renjie JIN Longjiang QU Zijian ZHOU
Masaki KOBAYASHI
Shinichi NISHIZAWA Masahiro MATSUDA Shinji KIMURA
Keisuke FUKADA Tatsuhiko SHIRAI Nozomu TOGAWA
Yuta NAGAHAMA Tetsuya MANABE
Baoxian Wang Ze Gao Hongbin Xu Shoupeng Qin Zhao Tan Xuchao Shi
Maki TSUKAHARA Yusaku HARADA Haruka HIRATA Daiki MIYAHARA Yang LI Yuko HARA-AZUMI Kazuo SAKIYAMA
Guijie LIN Jianxiao XIE Zejun ZHANG
Hiroki FURUE Yasuhiko IKEMATSU
Longye WANG Lingguo KONG Xiaoli ZENG Qingping YU
Ayaka FUJITA Mashiho MUKAIDA Tadahiro AZETSU Noriaki SUETAKE
Xingan SHA Masao YANAGISAWA Youhua SHI
Jiqian XU Lijin FANG Qiankun ZHAO Yingcai WAN Yue GAO Huaizhen WANG
Sei TAKANO Mitsuji MUNEYASU Soh YOSHIDA Akira ASANO Nanae DEWAKE Nobuo YOSHINARI Keiichi UCHIDA
Kohei DOI Takeshi SUGAWARA
Yuta FUKUDA Kota YOSHIDA Takeshi FUJINO
Mingjie LIU Chunyang WANG Jian GONG Ming TAN Changlin ZHOU
Hironori UCHIKAWA Manabu HAGIWARA
Atsuko MIYAJI Tatsuhiro YAMATSUKI Tomoka TAKAHASHI Ping-Lun WANG Tomoaki MIMOTO
Kazuya TANIGUCHI Satoshi TAYU Atsushi TAKAHASHI Mathieu MOLONGO Makoto MINAMI Katsuya NISHIOKA
Masayuki SHIMODA Atsushi TAKAHASHI
Yuya Ichikawa Naoko Misawa Chihiro Matsui Ken Takeuchi
Katsutoshi OTSUKA Kazuhito ITO
Rei UEDA Tsunato NAKAI Kota YOSHIDA Takeshi FUJINO
Motonari OHTSUKA Takahiro ISHIMARU Yuta TSUKIE Shingo KUKITA Kohtaro WATANABE
Iori KODAMA Tetsuya KOJIMA
Yusuke MATSUOKA
Yosuke SUGIURA Ryota NOGUCHI Tetsuya SHIMAMURA
Tadashi WADAYAMA Ayano NAKAI-KASAI
Li Cheng Huaixing Wang
Beining ZHANG Xile ZHANG Qin WANG Guan GUI Lin SHAN
Sicheng LIU Kaiyu WANG Haichuan YANG Tao ZHENG Zhenyu LEI Meng JIA Shangce GAO
Kun ZHOU Zejun ZHANG Xu TANG Wen XU Jianxiao XIE Changbing TANG
Soh YOSHIDA Nozomi YATOH Mitsuji MUNEYASU
Ryo YOSHIDA Soh YOSHIDA Mitsuji MUNEYASU
Nichika YUGE Hiroyuki ISHIHARA Morikazu NAKAMURA Takayuki NAKACHI
Ling ZHU Takayuki NAKACHI Bai ZHANG Yitu WANG
Toshiyuki MIYAMOTO Hiroki AKAMATSU
Yanchao LIU Xina CHENG Takeshi IKENAGA
Kengo HASHIMOTO Ken-ichi IWATA
Shota TOYOOKA Yoshinobu KAJIKAWA
Kyohei SUDO Keisuke HARA Masayuki TEZUKA Yusuke YOSHIDA
Hiroshi FUJISAKI
Tota SUKO Manabu KOBAYASHI
Akira KAMATSUKA Koki KAZAMA Takahiro YOSHIDA
Tingyuan NIE Jingjing NIE Kun ZHAO
Xinyu TIAN Hongyu HAN Limengnan ZHOU Hanzhou WU
Shibo DONG Haotian LI Yifei YANG Jiatianyi YU Zhenyu LEI Shangce GAO
Kengo NAKATA Daisuke MIYASHITA Jun DEGUCHI Ryuichi FUJIMOTO
Jie REN Minglin LIU Lisheng LI Shuai LI Mu FANG Wenbin LIU Yang LIU Haidong YU Shidong ZHANG
Ken NAKAMURA Takayuki NOZAKI
Yun LIANG Degui YAO Yang GAO Kaihua JIANG
Guanqun SHEN Kaikai CHI Osama ALFARRAJ Amr TOLBA
Zewei HE Zixuan CHEN Guizhong FU Yangming ZHENG Zhe-Ming LU
Bowen ZHANG Chang ZHANG Di YAO Xin ZHANG
Zhihao LI Ruihu LI Chaofeng GUAN Liangdong LU Hao SONG Qiang FU
Kenji UEHARA Kunihiko HIRAISHI
David CLARINO Shohei KURODA Shigeru YAMASHITA
Qi QI Zi TENG Hongmei HUO Ming XU Bing BAI
Ling Wang Zhongqiang Luo
Zongxiang YI Qiuxia XU
Donghoon CHANG Deukjo HONG Jinkeon KANG
Xiaowu LI Wei CUI Runxin LI Lianyin JIA Jinguo YOU
Zhang HUAGUO Xu WENJIE Li LIANGLIANG Liao HONGSHU
Seonkyu KIM Myoungsu SHIN Hanbeom SHIN Insung KIM Sunyeop KIM Donggeun KWON Deukjo HONG Jaechul SUNG Seokhie HONG
Manabu HAGIWARA
Power line communication (PLC) provides a flexible-access, wide-distribution, and low-cost communication solution for distribution network services. However, the PLC self-organizing networking in distribution network faces several challenges such as diversified data transmission requirements guarantee, the contradiction between long-term constraints and short-term optimization, and the uncertainty of global information. To address these challenges, we propose a backpressure learning-based data transmission reliability-aware self-organizing networking algorithm to minimize the weighted sum of node data backlogs under the long-term transmission reliability constraint. Specifically, the minimization problem is transformed by the Lyapunov optimization and backpressure algorithm. Finally, we propose a backpressure and data transmission reliability-aware state-action-reward-state-action (SARSA)-based self-organizing networking strategy to realize the PLC networking optimization. Simulation results demonstrate that the proposed algorithm has superior performances of data backlogs and transmission reliability.
Zhimin SHAO Chunxiu LIU Cong WANG Longtan LI Yimin LIU Zaiyan ZHOU
Data resource sharing can guarantee the reliable and safe operation of distribution power grid. However, it faces the challenges of low security and high delay in the sharing process. Consortium blockchain can ensure the security and efficiency of data resource sharing, but it still faces problems such as arbitrary master node selection and high consensus delay. In this paper, we propose an improved practical Byzantine fault tolerance (PBFT) consensus algorithm based on intelligent consensus node selection to realize high-security and real-time data resource sharing for distribution power grid. Firstly, a blockchain-based data resource sharing model is constructed to realize secure data resource storage by combining the consortium blockchain and interplanetary file system (IPFS). Then, the improved PBFT consensus algorithm is proposed to optimize the consensus node selection based on the upper confidence bound of node performance. It prevents Byzantine nodes from participating in the consensus process, reduces the consensus delay, and improves the security of data resource sharing. The simulation results verify the effectiveness of the proposed algorithm.
Kundan Lal DAS Munehisa SEKIKAWA Tadashi TSUBONE Naohiko INABA Hideaki OKAZAKI
This paper discusses the synchronization of two identical canard-generating oscillators. First, we investigate a canard explosion generated in a system containing a Bonhoeffer-van der Pol (BVP) oscillator using the actual parameter values obtained experimentally. We find that it is possible to numerically observe a canard explosion using this dynamic oscillator. Second, we analyze the complete and in-phase synchronizations of identical canard-generating coupled oscillators via experimental and numerical methods. However, we experimentally determine that a small decrease in the coupling strength of the system induces the collapse of the complete synchronization and the occurrence of a complex synchronization; this finding could not be explained considering four-dimensional autonomous coupled BVP oscillators in our numerical work. To numerically investigate the experimental results, we construct a model containing coupled BVP oscillators that are subjected to two weak periodic perturbations having the same frequency. Further, we find that this model can efficiently numerically reproduce experimentally observed synchronization.
Takahiro IINUMA Yudai EBATO Sou NOBUKAWA Nobuhiko WAGATSUMA Keiichiro INAGAKI Hirotaka DOHO Teruya YAMANISHI Haruhiko NISHIMURA
Stochastic resonance is a representative phenomenon in which the degree of synchronization with a weak input signal is enhanced using additive stochastic noise. In systems with multiple chaotic attractors, the chaos-chaos intermittent behavior in attractor-merging bifurcation induces chaotic resonance, which is similar to the stochastic resonance and has high sensitivity. However, controlling chaotic resonance is difficult because it requires adjusting the internal parameters from the outside. The reduced-region-of-orbit (RRO) method, which controls the attractor-merging bifurcation using an external feedback signal, is employed to overcome this issue. However, the lower perturbation of the feedback signal requires further improvement for engineering applications. This study proposed an RRO method with more sophisticated and less perturbed feedback signals, called the double-Gaussian-filtered RRO (DG-RRO) method. The inverse sign of the map function and double Gaussian filters were used to improve the local specification, i.e., the concentration around the local maximum/minimum in the feedback signals, called the DG-RRO feedback signals. Owing to their fine local specification, these signals achieved the attractor-merging bifurcation with significantly smaller feedback perturbation than that in the conventional RRO method. Consequently, chaotic resonance was induced through weak feedback perturbation. It exhibited greater synchronization against weak input signals than that induced by the conventional RRO feedback signal and sustained the same level of response frequency range as that of the conventional RRO method. These advantages may pave the way for utilizing chaotic resonance in engineering scenarios where the stochastic resonance has been applied.
Yi XIONG Senanayake THILAK Yu YONEZAWA Jun IMAOKA Masayoshi YAMAMOTO
This paper proposes an analytical model of maximum operating frequency of class-D zero-voltage-switching (ZVS) inverter. The model includes linearized drain-source parasitic capacitance and any duty ratio. The nonlinear drain-source parasitic capacitance is equally linearized through a charge-related equation. The model expresses the relationship among frequency, shunt capacitance, duty ratio, load impedance, output current phase, and DC input voltage under the ZVS condition. The analytical result shows that the maximum operating frequency under the ZVS condition can be obtained when the duty ratio, the output current phase, and the DC input voltage are set to optimal values. A 650 V/30 A SiC-MOSFET is utilized for both simulated and experimental verification, resulting in good consistency.
Yusaku HIRAI Toshimasa MATSUOKA Takatsugu KAMATA Sadahiro TANI Takao ONOYE
This paper presents a multi-channel biomedical sensor system with system-level chopping and stochastic analog-to-digital (A/D) conversion techniques. The system-level chopping technique extends the input-signal bandwidth and reduces the interchannel crosstalk caused by multiplexing. The system-level chopping can replace an analog low-pass filter (LPF) with a digital filter and can reduce its area occupation. The stochastic A/D conversion technique realizes power-efficient resolution enhancement. A novel auto-calibration technique is also proposed for the stochastic A/D conversion technique. The proposed system includes a prototype analog front-end (AFE) IC fabricated using a 130 nm CMOS process. The fabricated AFE IC improved its interchannel crosstalk by 40 dB compared with the conventional analog chopping architecture. The AFE IC achieved SNDR of 62.9 dB at a sampling rate of 31.25 kSps while consuming 9.6 μW from a 1.2 V power supply. The proposed resolution enhancement technique improved the measured SNDR by 4.5 dB.
Riaz-ul-haque MIAN Tomoki NAKAMURA Masuo KAJIYAMA Makoto EIKI Michihiro SHINTANI
Wafer-level performance prediction techniques have been increasingly gaining attention in production LSI testing due to their ability to reduce measurement costs without compromising test quality. Despite the availability of several efficient methods, the site-to-site variation commonly observed in multi-site testing for radio frequency circuits remains inadequately addressed. In this manuscript, we propose a wafer-level performance prediction approach for multi-site testing that takes into account the site-to-site variation. Our proposed method is built on the Gaussian process, a widely utilized wafer-level spatial correlation modeling technique, and enhances prediction accuracy by extending hierarchical modeling to leverage the test site information test engineers provide. Additionally, we propose a test-site sampling method that maximizes cost reduction while maintaining sufficient estimation accuracy. Our experimental results, which employ industrial production test data, demonstrate that our proposed method can decrease the estimation error to 1/19 of that a conventional method achieves. Furthermore, our sampling method can reduce the required measurements by 97% while ensuring satisfactory estimation accuracy.
Ryuta TAMURA Yuichi TAKANO Ryuhei MIYASHIRO
We study the mixed-integer optimization (MIO) approach to feature subset selection in nonlinear kernel support vector machines (SVMs) for binary classification. To measure the performance of subset selection, we use the distance between two classes (DBTC) in a high-dimensional feature space based on the Gaussian kernel function. However, DBTC to be maximized as an objective function is nonlinear, nonconvex and nonconcave. Despite the difficulty of linearizing such a nonlinear function in general, our major contribution is to propose a mixed-integer linear optimization (MILO) formulation to maximize DBTC for feature subset selection, and this MILO problem can be solved to optimality using optimization software. We also derive a reduced version of the MILO problem to accelerate our MILO computations. Experimental results show good computational efficiency for our MILO formulation with the reduced problem. Moreover, our method can often outperform the linear-SVM-based MILO formulation and recursive feature elimination in prediction performance, especially when there are relatively few data instances.
Homomorphic encryption (HE) is a promising approach for privacy-preserving applications, enabling a third party to assess functions on encrypted data. However, problems persist in implementing privacy-preserving applications through HE, including 1) long function evaluation latency and 2) limited HE primitives only allowing us to perform additions and multiplications. A homomorphic lookup-table (LUT) method has emerged to solve the above problems and enhance function evaluation efficiency. By leveraging homomorphic LUTs, intricate operations can be substituted. Previously proposed LUTs use bit-wise HE, such as TFHE, to evaluate single-input functions. However, the latency increases with the bit-length of the function’s input(s) and output. Additionally, an efficient implementation of multi-input functions remains an open question. This paper proposes a novel LUT-based privacy-preserving function evaluation method to handle multi-input functions while reducing the latency by adopting word-wise HE. Our optimization strategy adjusts table sizes to minimize the latency while preserving function output accuracy, especially for common machine-learning functions. Through our experimental evaluation utilizing the BFV scheme of the Microsoft SEAL library, we confirmed the runtime of arbitrary functions whose LUTs consist of all input-output combinations represented by given input bits: 1) single-input 12-bit functions in 0.14 s, 2) single-input 18-bit functions in 2.53 s, 3) two-input 6-bit functions in 0.17 s, and 4) three-input 4-bit functions in 0.20 s, employing four threads. Besides, we confirmed that our proposed table size optimization strategy worked well, achieving 1.2 times speed up with the same absolute error of order of magnitude of -4 (a × 10-4 where 1/$\sqrt{10}$ ≤ a < $\sqrt{10})$ for Swish and 1.9 times speed up for ReLU while decreasing the absolute error from order -2 to -4 compared to the baseline, i.e., polynomial approximation.
Yuta MINAMIKAWA Kazumasa SHINAGAWA
Secure computation is a kind of cryptographic techniques that enables to compute a function while keeping input data secret. Komano and Mizuki (International Journal of Information Security 2022) proposed a model of coin-based protocols, which are secure computation protocols using physical coins. They designed AND, XOR, and COPY protocols using so-called hand operations, which move coins from one player’s palm to the other palm. However, hand operations cannot be executed when all players’ hands are occupied. In this paper, we propose coin-based protocols without hand operations. In particular, we design a three-coin NOT protocol, a seven-coin AND protocol, a six-coin XOR protocol, and a five-coin COPY protocol without hand operations. Our protocols use random flips only as shuffle operations and are enough to compute any function since they have the same format of input and output, i.e., committed-format protocols.
Shion UTSUMI Kosei SAKAMOTO Takanori ISOBE
Lightweight block ciphers have gained attention in recent years due to the increasing demand for sensor nodes, RFID tags, and various applications. In such a situation, lightweight block ciphers Piccolo and TWINE have been proposed. Both Piccolo and TWINE are designed based on the Generalized Feistel Structure. However, it is crucial to address the potential vulnerability of these structures to the impossible differential attack. Therefore, detailed security evaluations against this attack are essential. This paper focuses on conducting bit-level evaluations of Piccolo and TWINE against related-key impossible differential attacks by leveraging SAT-aided approaches. We search for the longest distinguishers under the condition that the Hamming weight of the active bits of the input, which includes plaintext and master key differences, and output differences is set to 1, respectively. Additionally, for Tweakable TWINE, we search for the longest distinguishers under the related-tweak and related-tweak-key settings. The result for Piccolo with a 128-bit key, we identify the longest 16-round distinguishers for the first time. In addition, we also demonstrate the ability to extend these distinguishers to 17 rounds by taking into account the cancellation of the round key and plaintext difference. Regarding evaluations of TWINE with a 128-bit key, we search for the first time and reveal the distinguishers up to 19 rounds. For the search for Tweakable TWINE, we evaluate under the related-tweak-key setting for the first time and reveal the distinguishers up to 18 rounds for 80-bit key and 19 rounds for 128-bit key.
Nobuyuki TAKEUCHI Kosei SAKAMOTO Takuro SHIRAYA Takanori ISOBE
At CT-RSA 2022, Bossert et al. proposed
Changhui CHEN Haibin KAN Jie PENG Li WANG
Permutation polynomials have been studied for a long time and have important applications in cryptography, coding theory and combinatorial designs. In this paper, by means of the multivariate method and the resultant, we propose four new classes of permutation quadrinomials over 𝔽q3, where q is a prime power. We also show that they are not quasi-multiplicative equivalent to known ones. Moreover, we compare their differential uniformity with that of some known classes of permutation trinomials for some small q.
Dongjae LEE Deukjo HONG Jaechul SUNG Seokhie HONG
In this study, we focus on evaluating the false-positive probability of the Demirci-Selçuk meet-in-the-middle attack, particularly within the context of configuring precomputed tables with multisets. During the attack, the adversary effectively reduces the size of the key space by filtering out the wrong keys, subsequently recovering the master key from the reduced key space. The false-positive probability is defined as the probability that a wrong key will pass through the filtering process. Due to its direct impact on the post-filtering key space size, the false-positive probability is an important factor that influences the complexity and feasibility of the attack. However, despite its significance, the false-positive probability of the multiset-based Demirci-Selçuk meet-in-the-middle attack has not been thoroughly discussed, to the best of our knowledge. We generalize the Demirci-Selçuk meet-in-the-middle attack and present a sophisticated method for accurately calculating the false-positive probability. We validate our methodology through toy experiments, demonstrating its high precision. Additionally, we propose a method to optimize an attack by determining the optimal format of precomputed data, which requires the precise false-positive probability. Applying our approach to previous attacks on
We consider Feistel ciphers instantiated with tweakable block ciphers (TBCs) and ideal ciphers (ICs). The indistinguishability security of the TBC-based Feistel cipher is known, and the indifferentiability security of the IC-based Feistel cipher is also known, where independently keyed TBCs and independent ICs are assumed. In this paper, we analyze the security of a single-keyed TBC-based Feistel cipher and a single IC-based Feistel cipher. We characterize the security depending on the number of rounds. More precisely, we cover the case of contracting Feistel ciphers that have d ≥ 2 lines, and the results on Feistel ciphers are obtained as a special case by setting d = 2. Our indistinguishability security analysis shows that it is provably secure with d + 1 rounds. Our indifferentiability result shows that, regardless of the number of rounds, it cannot be secure. Our attacks are a type of a slide attack, and we consider a structure that uses a round constant, which is a well-known countermeasure against slide attacks. We show an indifferentiability attack for the case d = 2 and 3 rounds.
Jiao DU Ziwei ZHAO Shaojing FU Longjiang QU Chao LI
In this paper, we first recall the concept of 2-tuples distribution matrix, and further study its properties. Based on these properties, we find four special classes of 2-tuples distribution matrices. Then, we provide a new sufficient and necessary condition for n-variable rotation symmetric Boolean functions to be 2-correlation immune. Finally, we give a new method for constructing such functions when n=4t - 1 is prime, and we show an illustrative example.
Mamoru SHIBATA Ryutaroh MATSUMOTO
Secret sharing is a cryptographic scheme to encode a secret to multiple shares being distributed to participants, so that only qualified sets of participants can restore the original secret from their shares. When we encode a secret by a secret sharing scheme and distribute shares, sometimes not all participants are accessible, and it is desirable to distribute shares to those participants before a secret information is determined. Secret sharing schemes for classical secrets have been known to be able to distribute some shares before a given secret. Lie et al. found a ((2, 3))-threshold secret sharing for quantum secrets can distribute some shares before a given secret. However, it is unknown whether distributing some shares before a given secret is possible with other access structures of secret sharing for quantum secrets. We propose a quantum secret sharing scheme for quantum secrets that can distribute some shares before a given secret with other access structures.
Ryoto KOIZUMI Xiaoyan WANG Masahiro UMEHIRA Ran SUN Shigeki TAKEDA
In recent years, high-resolution 77 GHz band automotive radar, which is indispensable for autonomous driving, has been extensively investigated. In the future, as vehicle-mounted CS (chirp sequence) radars become more and more popular, intensive inter-radar wideband interference will become a serious problem, which results in undesired miss detection of targets. To address this problem, learning-based wideband interference mitigation method has been proposed, and its feasibility has been validated by simulations. In this paper, firstly we evaluated the trade-off between interference mitigation performance and model training time of the learning-based interference mitigation method in a simulation environment. Secondly, we conducted extensive inter-radar interference experiments by using multiple 77 GHz MIMO (Multiple-Input and Multiple-output) CS radars and collected real-world interference data. Finally, we compared the performance of learning-based interference mitigation method with existing algorithm-based methods by real experimental data in terms of SINR (signal to interference plus noise ratio) and MAPE (mean absolute percentage error).
Nihad A. A. ELHAG Liang LIU Ping WEI Hongshu LIAO Lin GAO
The concept of dual function radar-communication (DFRC) provides solution to the problem of spectrum scarcity. This paper examines a multiple-input multiple-output (MIMO) DFRC system with the assistance of a reconfigurable intelligent surface (RIS). The system is capable of sensing multiple spatial directions while serving multiple users via orthogonal frequency division multiplexing (OFDM). The objective of this study is to design the radiated waveforms and receive filters utilized by both the radar and users. The mutual information (MI) is used as an objective function, on average transmit power, for multiple targets while adhering to constraints on power leakage in specific directions and maintaining each user’s error rate. To address this problem, we propose an optimal solution based on a computational genetic algorithm (GA) using bisection method. The performance of the solution is demonstrated by numerical examples and it is shown that, our proposed algorithm can achieve optimum MI and the use of RIS with the MIMO DFRC system improving the system performance.
Daxiu ZHANG Xianwei LI Bo WEI Yukun SHI
With the increase of the number of Mobile User Equipments (MUEs), numerous tasks that with high requirements of resources are generated. However, the MUEs have limited computational resources, computing power and storage space. In this paper, a joint coverage constrained task offloading and resource allocation method based on deep reinforcement learning is proposed. The aim is offloading the tasks that cannot be processed locally to the edge servers to alleviate the conflict between the resource constraints of MUEs and the high performance task processing. The studied problem considers the dynamic variability and complexity of the system model, coverage, offloading decisions, communication relationships and resource constraints. An entropy weight method is used to optimize the resource allocation process and balance the energy consumption and execution time. The results of the study show that the number of tasks and MUEs affects the execution time and energy consumption of the task offloading and resource allocation processes in the interest of the service provider, and enhances the user experience.
Akira KITAYAMA Goichi ONO Hiroaki ITO
Edge devices with strict safety and reliability requirements, such as autonomous driving cars, industrial robots, and drones, necessitate software verification on such devices before operation. The human cost and time required for this analysis constitute a barrier in the cycle of software development and updating. In particular, the final verification at the edge device should at least strictly confirm that the updated software is not degraded from the current it. Since the edge device does not have the correct data, it is necessary for a human to judge whether the difference between the updated software and the operating it is due to degradation or improvement. Therefore, this verification is very costly. This paper proposes a novel automated method for efficient verification on edge devices of an object detection AI, which has found practical use in various applications. In the proposed method, a target object existence detector (TOED) (a simple binary classifier) judges whether an object in the recognition target class exists in the region of a prediction difference between the AI’s operating and updated versions. Using the results of this TOED judgement and the predicted difference, an automated verification system for the updated AI was constructed. TOED was designed as a simple binary classifier with four convolutional layers, and the accuracy of object existence judgment was evaluated for the difference between the predictions of the YOLOv5 L and X models using the Cityscapes dataset. The results showed judgement with more than 99.5% accuracy and 8.6% over detection, thus indicating that a verification system adopting this method would be more efficient than simple analysis of the prediction differences.
Sendren Sheng-Dong XU Albertus Andrie CHRISTIAN Chien-Peng HO Shun-Long WENG
During the COVID-19 pandemic, a robust system for masked face recognition has been required. Most existing solutions used many samples per identity for the model to recognize, but the processes involved are very laborious in a real-life scenario. Therefore, we propose “CPNet” as a suitable and reliable way of recognizing masked faces from only a few samples per identity. The prototype classifier uses a few-shot learning paradigm to perform the recognition process. To handle complex and occluded facial features, we incorporated the covariance structure of the classes to refine the class distance calculation. We also used sharpness-aware minimization (SAM) to improve the classifier. Extensive in-depth experiments on a variety of datasets show that our method achieves remarkable results with accuracy as high as 95.3%, which is 3.4% higher than that of the baseline prototype network used for comparison.
2D and 3D semantic segmentation play important roles in robotic scene understanding. However, current 3D semantic segmentation heavily relies on 3D point clouds, which are susceptible to factors such as point cloud noise, sparsity, estimation and reconstruction errors, and data imbalance. In this paper, a novel approach is proposed to enhance 3D semantic segmentation by incorporating 2D semantic segmentation from RGB-D sequences. Firstly, the RGB-D pairs are consistently segmented into 2D semantic maps using the tracking pipeline of Simultaneous Localization and Mapping (SLAM). This process effectively propagates object labels from full scans to corresponding labels in partial views with high probability. Subsequently, a novel Semantic Projection (SP) block is introduced, which integrates features extracted from localized 2D fragments across different camera viewpoints into their corresponding 3D semantic features. Lastly, the 3D semantic segmentation network utilizes a combination of 2D-3D fusion features to facilitate a merged semantic segmentation process for both 2D and 3D. Extensive experiments conducted on public datasets demonstrate the effective performance of the proposed 2D-assisted 3D semantic segmentation method.
Zhichao SHA Ziji MA Kunlai XIONG Liangcheng QIN Xueying WANG
Diagnosis at an early stage is clinically important for the cure of skin cancer. However, since some skin cancers have similar intuitive characteristics, and dermatologists rely on subjective experience to distinguish skin cancer types, the accuracy is often suboptimal. Recently, the introduction of computer methods in the medical field has better assisted physicians to improve the recognition rate but some challenges still exist. In the face of massive dermoscopic image data, residual network (ResNet) is more suitable for learning feature relationships inside big data because of its deeper network depth. Aiming at the deficiency of ResNet, this paper proposes a multi-region feature extraction and raising dimension matching method, which further improves the utilization rate of medical image features. This method firstly extracted rich and diverse features from multiple regions of the feature map, avoiding the deficiency of traditional residual modules repeatedly extracting features in a few fixed regions. Then, the fused features are strengthened by up-dimensioning the branch path information and stacking it with the main path, which solves the problem that the information of two paths is not ideal after fusion due to different dimensionality. The proposed method is experimented on the International Skin Imaging Collaboration (ISIC) Archive dataset, which contains more than 40,000 images. The results of this work on this dataset and other datasets are evaluated to be improved over networks containing traditional residual modules and some popular networks.
Existing weakly-supervised segmentation approaches based on image-level annotations may focus on the most activated region in the image and tend to identify only part of the target object. Intuitively, high-level semantics among objects of the same category in different images could help to recognize corresponding activated regions of the query. In this study, a scheme called Cycle-Consistency of Semantics Network (CyCSNet) is proposed, which can enhance the activation of the potential inactive regions of the target object by utilizing the cycle-consistent semantics from images of the same category in the training set. Moreover, a Dynamic Correlation Feature Selection (DCFS) algorithm is derived to reduce the noise from pixel-wise samples of low relevance for better training. Experiments on the PASCAL VOC 2012 dataset show that the proposed CyCSNet achieves competitive results compared with state-of-the-art weakly-supervised segmentation approaches.
Hiroya HACHIYAMA Takamichi NAKAMOTO
Devices presenting audiovisual information are widespread, but few ones presenting olfactory information. We have developed a device called an olfactory display that presents odors to users by mixing multiple fragrances. Previously developed olfactory displays had the problem that the ejection volume of liquid perfume droplets was large and the dynamic range of the blending ratio was small. In this study, we used an inkjet device that ejects small droplets in order to expand the dynamic range of blending ratios to present a variety of scents. By finely controlling the back pressure using an electro-osmotic pump (EO pump) and adjusting the timing of EO pump and inkjet device, we succeeded in stabilizing the ejection of the inkjet device and we can have large dynamic range.
Yang XIAO Zhongyuan ZHOU Mingjie SHENG Qi ZHOU
The method of extracting impedance parameters of surface mounted (SMD) electronic components by test is suitable for components with unknown model or material information, but requires consideration of errors caused by non-coaxial and measurement fixtures. In this paper, a fixture for impedance measurement is designed according to the characteristics of passive devices, and the fixture de-embedding method is used to eliminate errors and improve the test accuracy. The method of obtaining S parameters of fixture based on full wave simulation proposed in this paper can provide a thought for obtaining S parameters in de-embedding. Taking a certain patch capacitor as an example, the S parameters for de-embedding were obtained using methods based on full wave simulation, 2×Thru, and ADS simulation, and de-embedding tests were conducted. The results indicate that obtaining the S parameter of the testing fixture based on full wave simulation and conducting de-embedding testing compared to ADS simulation can accurately extract the impedance parameters of SMD electronic components, which provides a reference for the study of electromagnetic interference (EMI) coupling mechanism.
Hongbo LI Aijun LIU Qiang YANG Zhe LYU Di YAO
To improve the direction-of-arrival estimation performance of the small-aperture array, we propose a source localization method inspired by the Ormia fly’s coupled ears and MUSIC-like algorithm. The Ormia can local its host cricket’s sound precisely despite the tremendous incompatibility between the spacing of its ear and the sound wavelength. In this paper, we first implement a biologically inspired coupled system based on the coupled model of the Ormia’s ears and solve its responses by the modal decomposition method. Then, we analyze the effect of the system on the received signals of the array. Research shows that the system amplifies the amplitude ratio and phase difference between the signals, equivalent to creating a virtual array with a larger aperture. Finally, we apply the MUSIC-like algorithm for DOA estimation to suppress the colored noise caused by the system. Numerical results demonstrate that the proposed method can improve the localization precision and resolution of the array.
Xiaolong ZHENG Bangjie LI Daqiao ZHANG Di YAO Xuguang YANG
High Frequency Surface Wave Radar holds significant potential in sea detection. However, the target signals are often surpassed by substantial sea clutter and ionospheric clutter, making it crucial to address clutter suppression and extract weak target signals amidst the strong noise background.This study proposes a novel method for separating weak harmonic target signals based on local tangent space, leveraging the chaotic feature of ionospheric clutter.The effectiveness of this approach is demonstrated through the analysis of measured data, thereby validating its practicality and potential for real-world applications.
Yun JIANG Huiyang LIU Xiaopeng JIAO Ji WANG Qiaoqiao XIA
In this letter, a novel projection algorithm is proposed in which projection onto a triangle consisting of the three even-vertices closest to the vector to be projected replaces check polytope projection, achieving the same FER performance as exact projection algorithm in both high-iteration and low-iteration regime. Simulation results show that compared with the sparse affine projection algorithm (SAPA), it can improve the FER performance by 0.2 dB as well as save average number of iterations by 4.3%.
Hakan BERCAG Osman KUKRER Aykut HOCANIN
A new extended normalized least-mean-square (ENLMS) algorithm is proposed. A novel non-linear time-varying step-size (NLTVSS) formula is derived. The convergence rate of ENLMS increases due to NLTVSS as the number of data-reuse L is increased. ENLMS does not involve matrix inversion, and, thus, avoids numerical instability issues.
We propose a zero-order-hold triggered control for a chain of integrators with an arbitrary sampling period. We analytically show that our control scheme globally asymptotically stabilizes the considered system. The key feature is that the pre-specified sampling period can be enlarged as desired by adjusting a gain-scaling factor. An example with various simulation results is given for clear illustration.
Jun-Feng LIU Yuan FENG Zeng-Hui LI Jing-Wei TANG
To improve the control performance of the permanent magnet synchronous motor speed control system, the fractional order calculus theory is combined with the sliding mode control to design the fractional order integral sliding mode sliding mode surface (FOISM) to improve the robustness of the system. Secondly, considering the existence of chattering phenomenon in sliding mode control, a new second-order sliding mode reaching law (NSOSMRL) is designed to improve the control accuracy of the system. Finally, the effectiveness of the proposed strategy is demonstrated by simulation.
Boolean functions play an important role in symmetric ciphers. One of important open problems on Boolean functions is determining the maximum possible resiliency order of n-variable Boolean functions with optimal algebraic immunity. In this letter, we search Boolean functions in the rotation symmetric class, and determine the maximum possible resiliency order of 9-variable Boolean functions with optimal algebraic immunity. Moreover, the maximum possible nonlinearity of 9-variable rotation symmetric Boolean functions with optimal algebraic immunity-resiliency trade-off is determined to be 224.
You GAO Ming-Yue XIE Gang WANG Lin-Zhi SHEN
Mutually unbiased bases (MUBs) are widely used in quantum information processing and play an important role in quantum cryptography, quantum state tomography and communications. It’s difficult to construct MUBs and remains unknown whether complete MUBs exist for any non prime power. Therefore, researchers have proposed the solution to construct approximately mutually unbiased bases (AMUBs) by weakening the inner product conditions. This paper constructs q AMUBs of ℂq, (q + 1) AMUBs of ℂq-1 and q AMUBs of ℂq-1 by using character sums over Galois rings and finite fields, where q is a power of a prime. The first construction of q AMUBs of ℂq is new which illustrates K AMUBs of ℂK can be achieved. The second and third constructions in this paper include the partial results about AMUBs constructed by W. Wang et al. in [9].
Xiuping PENG Yinna LIU Hongbin LIN
In this letter, we propose a novel direct construction of three-phase Z-complementary triads with flexible lengths and various widths of the zero-correlation zone based on extended Boolean functions. The maximum width ratio of the zero-correlation zone of the construction can reach 3/4. And the proposed sequences can exist for all lengths other than powers of three. We also investigate the peak-to-average power ratio properties of the proposed ZCTs.
Haiyang LIU Xiaopeng JIAO Lianrong MA
In this letter, we investigate the application of the subgradient method to design efficient algorithm for linear programming (LP) decoding of binary linear codes. A major drawback of the original formulation of LP decoding is that the description complexity of the feasible region is exponential in the check node degrees of the code. In order to tackle the problem, we propose a processing technique for LP decoding with the subgradient method, whose complexity is linear in the check node degrees. Consequently, a message-passing type decoding algorithm can be obtained, whose per-iteration complexity is extremely low. Moreover, if the algorithm converges to a valid codeword, it is guaranteed to be a maximum likelihood codeword. Simulation results on several binary linear codes with short lengths suggest that the performances of LP decoding based on the subgradient method and the state-of-art LP decoding implementation approach are comparable.
Mengmeng ZHANG Zeliang ZHANG Yuan LI Ran CHENG Hongyuan JING Zhi LIU
Point cloud video contains not only color information but also spatial position information and usually has large volume of data. Typical rate distortion optimization algorithms based on Human Visual System only consider the color information, which limit the coding performance. In this paper, a Coding Tree Unit (CTU) level quantization parameter (QP) adjustment algorithm based on JND and spatial complexity is proposed to improve the subjective and objective quality of Video-Based Point Cloud Compression (V-PCC). Firstly, it is found that the JND model is degraded at CTU level for attribute video due to the pixel filling strategy of V-PCC, and an improved JND model is designed using the occupancy map. Secondly, a spatial complexity detection metric is designed to measure the visual importance of each CTU. Finally, a CTU-level QP adjustment scheme based on both JND levels and visual importance is proposed for geometry and attribute video. The experimental results show that, compared with the latest V-PCC (TMC2-18.0) anchors, the BD-rate is reduced by -2.8% and -3.2% for D1 and D2 metrics, respectively, and the subjective quality is improved significantly.
Ngoc-Tan NGUYEN Trung-Duc NGUYEN Nam-Hoang NGUYEN Trong-Minh HOANG
Multi-access edge computing (MEC) is an emerging technology of 5G and beyond mobile networks which deploys computation services at edge servers for reducing service delay. However, edge servers may have not enough computation capabilities to satisfy the delay requirement of services. Thus, heavy computation tasks need to be offloaded to other MEC servers. In this paper, we propose an offloading solution, called optimal delay offloading (ODO) solution, that can guarantee service delay requirements. Specificially, this method exploits an estimation of queuing delay among MEC servers to find a proper offloading server with the lowest service delay to offload the computation task. Simulation results have proved that the proposed ODO method outperforms the conventional methods, i.e., the non-offloading and the energy-efficient offloading [10] methods (up to 1.6 times) in terms of guaranteeing the service delay under a threshold.
In underwater acoustic communication systems based on orthogonal frequency division multiplexing (OFDM), taking clipping to reduce the peak-to-average power ratio leads to nonlinear distortion of the signal, making the receiver unable to recover the faded signal accurately. In this letter, an Aquila optimizer-based convolutional attention block stacked network (AO-CABNet) is proposed to replace the receiver to improve the ability to recover the original signal. Simulation results show that the AO method has better optimization capability to quickly obtain the optimal parameters of the network model, and the proposed AO-CABNet structure outperforms existing schemes.
Terahertz (THz) ultra-massive multiple-input multiple-output (UM-MIMO) is envisioned as a key enabling technology of 6G wireless communication. In UM-MIMO systems, downlink channel state information (CSI) has to be fed to the base station for beamforming. However, the feedback overhead becomes unacceptable because of the large antenna array. In this letter, the characteristic of CSI is explored from the perspective of data distribution. Based on this characteristic, a novel network named Attention-GRU Net (AGNet) is proposed for CSI feedback. Simulation results show that the proposed AGNet outperforms other advanced methods in the quality of CSI feedback in UM-MIMO systems.
Pingping JI Lingge JIANG Chen HE Di HE Zhuxian LIAN
In this letter, we study the dynamic antenna grouping and the hybrid beamforming for high altitude platform (HAP) massive multiple-input multiple-output (MIMO) systems. We first exploit the fact that the ergodic sum rate is only related to statistical channel state information (SCSI) in the large-scale array regime, and then we utilize it to perform the dynamic antenna grouping and design the RF beamformer. By applying the Gershgorin Circle Theorem, the dynamic antenna grouping is realized based on the novel statistical distance metric instead of the value of the instantaneous channels. The RF beamformer is designed according to the singular value decomposition of the statistical correlation matrix according to the obtained dynamic antenna group. Dynamic subarrays mean each RF chain is linked with a dynamic antenna sub-set. The baseband beamformer is derived by utilizing the zero forcing (ZF). Numerical results demonstrate the performance enhancement of our proposed dynamic hybrid precoding (DHP) algorithm.
Integrated Sensing and Communication at terahertz band (ISAC-THz) has been considered as one of the promising technologies for the future 6G. However, in the phase-shifters (PSs) based massive multiple-input-multiple-output (MIMO) hybrid precoding system, due to the ultra-large bandwidth of the terahertz frequency band, the subcarrier channels with different frequencies have different equivalent spatial directions. Therefore, the hybrid beamforming at the transmitter will cause serious beam split problems. In this letter, we propose a dual-function radar communication (DFRC) precoding method by considering recently proposed delay-phase precoding structure for THz massive MIMO. By adding delay phase components between the radio frequency chain and the frequency-independent PSs, the beam is aligned with the target physical direction over the entire bandwidth to reduce the loss caused by beam splitting effect. Furthermore, we employ a hardware structure by using true-time-delayers (TTDs) to realize the concept of frequency-dependent phase shifts. Theoretical analysis and simulation results have shown that it can increase communication performance and make up for the performance loss caused by the dual-function trade-off of communication radar to a certain extent.
Menglong WU Jianwen ZHANG Yongfa XIE Yongchao SHI Tianao YAO
Direct-current biased optical orthogonal frequency division multiplexing (DCO-OFDM) exhibits a high peak-to-average power ratio (PAPR), which leads to nonlinear distortion in the system. In response to the above, the study proposes a scheme that combines direct-current biased optical orthogonal frequency division multiplexing with index modulation (DCO-OFDM-IM) and convex optimization algorithms. The proposed scheme utilizes partially activated subcarriers of the system to transmit constellation modulated symbol information, and transmits additional symbol information of the system through the combination of activated carrier index. Additionally, a dither signal is added to the system’s idle subcarriers, and the convex optimization algorithm is applied to solve for the optimal values of this dither signal. Therefore, by ensuring the system’s peak power remains unchanged, the scheme enhances the system’s average transmission power and thus achieves a reduction in the PAPR. Experimental results indicate that at a system’s complementary cumulative distribution function (CCDF) of 10-4, the proposed scheme reduces the PAPR by approximately 3.5 dB compared to the conventional DCO-OFDM system. Moreover, at a bit error rate (BER) of 10-3, the proposed scheme can lower the signal-to-noise ratio (SNR) by about 1 dB relative to the traditional DCO-OFDM system. Therefore, the proposed scheme enables a more substantial reduction in PAPR and improvement in BER performance compared to the conventional DCO-OFDM approach.
Sota MORIYAMA Koichi ICHIGE Yuichi HORI Masayuki TACHI
In this paper, we propose a method for video reflection removal using a video restoration framework with enhanced deformable networks (EDVR). We examine the effect of each module in EDVR on video reflection removal and modify the models using 3D convolutions. The performance of each modified model is evaluated in terms of the RMSE between the structural similarity (SSIM) and the smoothed SSIM representing temporal consistency.
Qi QI Liuyi MENG Ming XU Bing BAI
In face super-resolution reconstruction, the interference caused by the texture and color of the hair region on the details and contours of the face region can negatively affect the reconstruction results. This paper proposes a semantic-based, dual-branch face super-resolution algorithm to address the issue of varying reconstruction complexities and mutual interference among different pixel semantics in face images. The algorithm clusters pixel semantic data to create a hierarchical representation, distinguishing between facial pixel regions and hair pixel regions. Subsequently, independent image enhancement is applied to these distinct pixel regions to mitigate their interference, resulting in a vivid, super-resolution face image.